用遗传算法改进战术计划

A. Schultz, J. Grefenstette
{"title":"用遗传算法改进战术计划","authors":"A. Schultz, J. Grefenstette","doi":"10.1109/TAI.1990.130358","DOIUrl":null,"url":null,"abstract":"The problem of learning decision rules for sequential tasks is addressed, focusing on the problem of learning tactical plans from a simple flight simulator where a plane must avoid a missile. The learning method relies on the notion of competition and uses genetic algorithms to search the space of decision policies. In the research presented here, the use of available heuristic domain knowledge to initialize the population to produce better plans is investigated.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"107 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Improving tactical plans with genetic algorithms\",\"authors\":\"A. Schultz, J. Grefenstette\",\"doi\":\"10.1109/TAI.1990.130358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of learning decision rules for sequential tasks is addressed, focusing on the problem of learning tactical plans from a simple flight simulator where a plane must avoid a missile. The learning method relies on the notion of competition and uses genetic algorithms to search the space of decision policies. In the research presented here, the use of available heuristic domain knowledge to initialize the population to produce better plans is investigated.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"107 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

研究了序列任务决策规则的学习问题,重点研究了从一个简单的飞行模拟器中学习战术计划的问题,其中飞机必须避开导弹。该学习方法基于竞争的概念,利用遗传算法搜索决策策略的空间。在这里提出的研究中,研究了使用可用的启发式领域知识来初始化种群以产生更好的计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving tactical plans with genetic algorithms
The problem of learning decision rules for sequential tasks is addressed, focusing on the problem of learning tactical plans from a simple flight simulator where a plane must avoid a missile. The learning method relies on the notion of competition and uses genetic algorithms to search the space of decision policies. In the research presented here, the use of available heuristic domain knowledge to initialize the population to produce better plans is investigated.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信