类雅可比形式,微分方程和Hecke算子

Min Ho Lee
{"title":"类雅可比形式,微分方程和Hecke算子","authors":"Min Ho Lee","doi":"10.1080/02781070500324300","DOIUrl":null,"url":null,"abstract":"We construct a map from the space of Jacobi-like forms [image omitted]() for a discrete subgroup [image omitted] to the space [image omitted] of sequences of meromorphic functions satisfying certain conditions determined by some linear ordinary differential operators and prove that the Hecke operator actions on [image omitted]() and on [image omitted] are compatible with respect to this map.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"142 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Jacobi-like forms, differential equations, and Hecke operators\",\"authors\":\"Min Ho Lee\",\"doi\":\"10.1080/02781070500324300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a map from the space of Jacobi-like forms [image omitted]() for a discrete subgroup [image omitted] to the space [image omitted] of sequences of meromorphic functions satisfying certain conditions determined by some linear ordinary differential operators and prove that the Hecke operator actions on [image omitted]() and on [image omitted] are compatible with respect to this map.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"142 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500324300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500324300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们构造了一个从离散子群[象略]的类雅可比形式空间[象略]()到满足由线性常微分算子确定的一定条件的亚纯函数序列空间[象略]的映射,并证明了作用于[象略]()和作用于[象略]的Hecke算子在这个映射上是相容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jacobi-like forms, differential equations, and Hecke operators
We construct a map from the space of Jacobi-like forms [image omitted]() for a discrete subgroup [image omitted] to the space [image omitted] of sequences of meromorphic functions satisfying certain conditions determined by some linear ordinary differential operators and prove that the Hecke operator actions on [image omitted]() and on [image omitted] are compatible with respect to this map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信