{"title":"类雅可比形式,微分方程和Hecke算子","authors":"Min Ho Lee","doi":"10.1080/02781070500324300","DOIUrl":null,"url":null,"abstract":"We construct a map from the space of Jacobi-like forms [image omitted]() for a discrete subgroup [image omitted] to the space [image omitted] of sequences of meromorphic functions satisfying certain conditions determined by some linear ordinary differential operators and prove that the Hecke operator actions on [image omitted]() and on [image omitted] are compatible with respect to this map.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"142 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Jacobi-like forms, differential equations, and Hecke operators\",\"authors\":\"Min Ho Lee\",\"doi\":\"10.1080/02781070500324300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a map from the space of Jacobi-like forms [image omitted]() for a discrete subgroup [image omitted] to the space [image omitted] of sequences of meromorphic functions satisfying certain conditions determined by some linear ordinary differential operators and prove that the Hecke operator actions on [image omitted]() and on [image omitted] are compatible with respect to this map.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"142 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500324300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500324300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Jacobi-like forms, differential equations, and Hecke operators
We construct a map from the space of Jacobi-like forms [image omitted]() for a discrete subgroup [image omitted] to the space [image omitted] of sequences of meromorphic functions satisfying certain conditions determined by some linear ordinary differential operators and prove that the Hecke operator actions on [image omitted]() and on [image omitted] are compatible with respect to this map.