利用最大信息系数聚类分析SAGE文库

Dongming Tang
{"title":"利用最大信息系数聚类分析SAGE文库","authors":"Dongming Tang","doi":"10.1109/SOCPAR.2015.7492785","DOIUrl":null,"url":null,"abstract":"Serial analysis of gene expression (SAGE) is an efficient technique to produce a snapshot of the messenger RNA population in a sample. Clustering method has been widely used for SAGE data mining. In this study, we employ a new published measurement (maximal information coefficient, MIC) to measure the pair-wise correlation coefficients between SAGE libraries and then cluster together libraries with similar expression pattern. In addition, we present a clustering method named MicClustSAGE. We compared the results obtained by our method and hierarchical clustering with Pearson correlation. The experimental results exhibit the performance of the proposed method on several real-life SAGE datasets.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering analysis SAGE libraries using maximal information coefficient\",\"authors\":\"Dongming Tang\",\"doi\":\"10.1109/SOCPAR.2015.7492785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serial analysis of gene expression (SAGE) is an efficient technique to produce a snapshot of the messenger RNA population in a sample. Clustering method has been widely used for SAGE data mining. In this study, we employ a new published measurement (maximal information coefficient, MIC) to measure the pair-wise correlation coefficients between SAGE libraries and then cluster together libraries with similar expression pattern. In addition, we present a clustering method named MicClustSAGE. We compared the results obtained by our method and hierarchical clustering with Pearson correlation. The experimental results exhibit the performance of the proposed method on several real-life SAGE datasets.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因表达序列分析(SAGE)是一种获取样本中信使RNA群体快照的有效技术。聚类方法在SAGE数据挖掘中得到了广泛应用。在这项研究中,我们采用了一个新的测量方法(最大信息系数,MIC)来测量SAGE文库之间的成对相关系数,然后将具有相似表达模式的文库聚在一起。此外,我们还提出了一种名为MicClustSAGE的聚类方法。我们比较了用我们的方法得到的结果和层次聚类与Pearson相关。实验结果表明了该方法在多个实际SAGE数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering analysis SAGE libraries using maximal information coefficient
Serial analysis of gene expression (SAGE) is an efficient technique to produce a snapshot of the messenger RNA population in a sample. Clustering method has been widely used for SAGE data mining. In this study, we employ a new published measurement (maximal information coefficient, MIC) to measure the pair-wise correlation coefficients between SAGE libraries and then cluster together libraries with similar expression pattern. In addition, we present a clustering method named MicClustSAGE. We compared the results obtained by our method and hierarchical clustering with Pearson correlation. The experimental results exhibit the performance of the proposed method on several real-life SAGE datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信