结合预测:遗传规划方法

Adriano Soares Koshiyama, Tatiana Escovedo, D. Dias, M. Vellasco, M. Pacheco
{"title":"结合预测:遗传规划方法","authors":"Adriano Soares Koshiyama, Tatiana Escovedo, D. Dias, M. Vellasco, M. Pacheco","doi":"10.4018/jncr.2012070103","DOIUrl":null,"url":null,"abstract":"Combining forecasts is a common practice in time series analysis. This technique involves weighing each estimate of different models in order to minimize the error between the resulting output and the target. This work presents a novel methodology, aiming to combine forecasts using genetic programming, a metaheuristic that searches for a nonlinear combination and selection of forecasters simultaneously. To present the method, the authors made three different tests comparing with the linear forecasting combination, evaluating both in terms of RMSE and MAPE. The statistical analysis shows that the genetic programming combination outperforms the linear combination in two of the three tests evaluated.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Forecasts: A Genetic Programming Approach\",\"authors\":\"Adriano Soares Koshiyama, Tatiana Escovedo, D. Dias, M. Vellasco, M. Pacheco\",\"doi\":\"10.4018/jncr.2012070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining forecasts is a common practice in time series analysis. This technique involves weighing each estimate of different models in order to minimize the error between the resulting output and the target. This work presents a novel methodology, aiming to combine forecasts using genetic programming, a metaheuristic that searches for a nonlinear combination and selection of forecasters simultaneously. To present the method, the authors made three different tests comparing with the linear forecasting combination, evaluating both in terms of RMSE and MAPE. The statistical analysis shows that the genetic programming combination outperforms the linear combination in two of the three tests evaluated.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jncr.2012070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jncr.2012070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

组合预测是时间序列分析中常见的做法。该技术涉及权衡不同模型的每个估计,以便最小化结果输出与目标之间的误差。这项工作提出了一种新的方法,旨在使用遗传规划结合预测,这是一种元启发式方法,可以同时搜索非线性组合和预测者的选择。为了提出该方法,作者与线性预测组合进行了三种不同的测试,并在RMSE和MAPE方面进行了评估。统计分析表明,遗传规划组合在三个测试中的两个测试中优于线性组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Forecasts: A Genetic Programming Approach
Combining forecasts is a common practice in time series analysis. This technique involves weighing each estimate of different models in order to minimize the error between the resulting output and the target. This work presents a novel methodology, aiming to combine forecasts using genetic programming, a metaheuristic that searches for a nonlinear combination and selection of forecasters simultaneously. To present the method, the authors made three different tests comparing with the linear forecasting combination, evaluating both in terms of RMSE and MAPE. The statistical analysis shows that the genetic programming combination outperforms the linear combination in two of the three tests evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信