{"title":"发现分类规则的自底向上匹兹堡方法","authors":"Priyanka Sharma, S. Ratnoo","doi":"10.1109/IC3I.2014.7019579","DOIUrl":null,"url":null,"abstract":"This paper presents bottom-up Pittsburgh approach for discovery of classification rules. Population initialization makes use of entropy as the attribute significance measure and contains variable sized organizations. Each organization contains a set of IF-THEN rules. As bottom-up approach is employed, so traditional operators are not feasible and efficient to use. Therefore, four evolutionary operators are devised for realizing the evolutionary operations performed on organizations. Bottom-up Pittsburgh approach gives best set of rule having good accuracy. In experiments, the effectiveness of the proposed algorithm is evaluated by comparing the results of bottom-up Pittsburgh with and without entropy to the top-down Michigan approach with and without entropy on 10 datasets from the UCI and KEEL repository. All results show that bottom-up Pittsburgh approach achieves a higher predictive accuracy and is more consistent.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"29 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bottom-up Pittsburgh approach for discovery of classification rules\",\"authors\":\"Priyanka Sharma, S. Ratnoo\",\"doi\":\"10.1109/IC3I.2014.7019579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents bottom-up Pittsburgh approach for discovery of classification rules. Population initialization makes use of entropy as the attribute significance measure and contains variable sized organizations. Each organization contains a set of IF-THEN rules. As bottom-up approach is employed, so traditional operators are not feasible and efficient to use. Therefore, four evolutionary operators are devised for realizing the evolutionary operations performed on organizations. Bottom-up Pittsburgh approach gives best set of rule having good accuracy. In experiments, the effectiveness of the proposed algorithm is evaluated by comparing the results of bottom-up Pittsburgh with and without entropy to the top-down Michigan approach with and without entropy on 10 datasets from the UCI and KEEL repository. All results show that bottom-up Pittsburgh approach achieves a higher predictive accuracy and is more consistent.\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"29 17\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bottom-up Pittsburgh approach for discovery of classification rules
This paper presents bottom-up Pittsburgh approach for discovery of classification rules. Population initialization makes use of entropy as the attribute significance measure and contains variable sized organizations. Each organization contains a set of IF-THEN rules. As bottom-up approach is employed, so traditional operators are not feasible and efficient to use. Therefore, four evolutionary operators are devised for realizing the evolutionary operations performed on organizations. Bottom-up Pittsburgh approach gives best set of rule having good accuracy. In experiments, the effectiveness of the proposed algorithm is evaluated by comparing the results of bottom-up Pittsburgh with and without entropy to the top-down Michigan approach with and without entropy on 10 datasets from the UCI and KEEL repository. All results show that bottom-up Pittsburgh approach achieves a higher predictive accuracy and is more consistent.