视觉场景分类的嵌入式系统设计

Sumair Aziz, Zeshan Kareem, Muhammad Umar Khan, Muhammad Atif Imtiaz
{"title":"视觉场景分类的嵌入式系统设计","authors":"Sumair Aziz, Zeshan Kareem, Muhammad Umar Khan, Muhammad Atif Imtiaz","doi":"10.1109/IEMCON.2018.8614864","DOIUrl":null,"url":null,"abstract":"Computer vision and robotics community is experiencing growing interest in visual scene classification due to availability of low cost and compact visual sensing devices. This paper presents framework aimed at embedded system design for visual scene classification. In the proposed framework we used data fusion of local and global descriptors as feature vectors for scene classification. We construct feature vector by integrating Local Quinary Patterns (LQP), Bag of Visual Words (BoW) and Histogram of Oriented Gradients (HOG). For classification multiclass Support Vector Machines (SVM) is used. Experiments are performed on publicly available MIT indoor scene classification database. Comparison of our approach with other methods show that our approach is efficient in terms of overall accuracy.","PeriodicalId":368939,"journal":{"name":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"28 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Embedded System Design for Visual Scene Classification\",\"authors\":\"Sumair Aziz, Zeshan Kareem, Muhammad Umar Khan, Muhammad Atif Imtiaz\",\"doi\":\"10.1109/IEMCON.2018.8614864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision and robotics community is experiencing growing interest in visual scene classification due to availability of low cost and compact visual sensing devices. This paper presents framework aimed at embedded system design for visual scene classification. In the proposed framework we used data fusion of local and global descriptors as feature vectors for scene classification. We construct feature vector by integrating Local Quinary Patterns (LQP), Bag of Visual Words (BoW) and Histogram of Oriented Gradients (HOG). For classification multiclass Support Vector Machines (SVM) is used. Experiments are performed on publicly available MIT indoor scene classification database. Comparison of our approach with other methods show that our approach is efficient in terms of overall accuracy.\",\"PeriodicalId\":368939,\"journal\":{\"name\":\"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"28 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON.2018.8614864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON.2018.8614864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于低成本和紧凑的视觉传感设备的可用性,计算机视觉和机器人社区对视觉场景分类的兴趣日益浓厚。本文提出了一种用于嵌入式系统视觉场景分类的框架。在该框架中,我们将局部描述符和全局描述符的数据融合作为场景分类的特征向量。我们通过整合局部五元模式(LQP)、视觉词袋(BoW)和定向梯度直方图(HOG)来构造特征向量。采用多类支持向量机(SVM)进行分类。实验在公开的MIT室内场景分类数据库上进行。与其他方法的比较表明,我们的方法在总体精度方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded System Design for Visual Scene Classification
Computer vision and robotics community is experiencing growing interest in visual scene classification due to availability of low cost and compact visual sensing devices. This paper presents framework aimed at embedded system design for visual scene classification. In the proposed framework we used data fusion of local and global descriptors as feature vectors for scene classification. We construct feature vector by integrating Local Quinary Patterns (LQP), Bag of Visual Words (BoW) and Histogram of Oriented Gradients (HOG). For classification multiclass Support Vector Machines (SVM) is used. Experiments are performed on publicly available MIT indoor scene classification database. Comparison of our approach with other methods show that our approach is efficient in terms of overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信