对分岔滤波器零点和极点几何理论的简要贡献

J. Petrzela
{"title":"对分岔滤波器零点和极点几何理论的简要贡献","authors":"J. Petrzela","doi":"10.23919/AE49394.2020.9232849","DOIUrl":null,"url":null,"abstract":"This paper briefly contributes to synthesis of non-integer order frequency filters. Well known method of construction of desired frequency responses based on locations of zeroes and poles is generalized to fractional-order (FO) domain. Several prototypes of FO transfer functions are geometrically interpreted using a complex plane. Each transfer function has a single real degree of freedom and corresponding unique frequency responses. Proposed approach is verified by example of very simple two-band FO audio equalizer.","PeriodicalId":294648,"journal":{"name":"2020 International Conference on Applied Electronics (AE)","volume":"62 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief Contribution to Geometrical Theory of Zeroes and Poles of Bifractional Filters\",\"authors\":\"J. Petrzela\",\"doi\":\"10.23919/AE49394.2020.9232849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper briefly contributes to synthesis of non-integer order frequency filters. Well known method of construction of desired frequency responses based on locations of zeroes and poles is generalized to fractional-order (FO) domain. Several prototypes of FO transfer functions are geometrically interpreted using a complex plane. Each transfer function has a single real degree of freedom and corresponding unique frequency responses. Proposed approach is verified by example of very simple two-band FO audio equalizer.\",\"PeriodicalId\":294648,\"journal\":{\"name\":\"2020 International Conference on Applied Electronics (AE)\",\"volume\":\"62 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Applied Electronics (AE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AE49394.2020.9232849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AE49394.2020.9232849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文简要介绍了非整数阶频率滤波器的合成。将基于零点和极点位置构造期望频率响应的方法推广到分数阶域。几个原型的FO传递函数的几何解释使用复平面。每个传递函数都有一个真实自由度和相应的唯一频率响应。通过一个非常简单的双频带FO音频均衡器的实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief Contribution to Geometrical Theory of Zeroes and Poles of Bifractional Filters
This paper briefly contributes to synthesis of non-integer order frequency filters. Well known method of construction of desired frequency responses based on locations of zeroes and poles is generalized to fractional-order (FO) domain. Several prototypes of FO transfer functions are geometrically interpreted using a complex plane. Each transfer function has a single real degree of freedom and corresponding unique frequency responses. Proposed approach is verified by example of very simple two-band FO audio equalizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信