{"title":"受昆虫神经回路启发的实时机器人避碰视觉","authors":"H. Okuno, T. Yagi","doi":"10.1109/IROS.2007.4399089","DOIUrl":null,"url":null,"abstract":"A real-time vision sensor for collision avoidance was designed. To respond selectively to approaching objects on direct collision course, the sensor employs an algorithm inspired by the visual nervous system in a locust, which can avoid a collision robustly by using visual information. We implemented the architecture of the locust nervous system with a compact hardware system which contains mixed analog- digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The response properties of the system were examined by using simulated movie images, and the system was tested also in real- world situations by loading it on a motorized car. The system was confirmed to respond selectively to colliding objects even in complicated real-world situations.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"6 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-time robot vision for collision avoidance inspired by neuronal circuits of insects\",\"authors\":\"H. Okuno, T. Yagi\",\"doi\":\"10.1109/IROS.2007.4399089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real-time vision sensor for collision avoidance was designed. To respond selectively to approaching objects on direct collision course, the sensor employs an algorithm inspired by the visual nervous system in a locust, which can avoid a collision robustly by using visual information. We implemented the architecture of the locust nervous system with a compact hardware system which contains mixed analog- digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The response properties of the system were examined by using simulated movie images, and the system was tested also in real- world situations by loading it on a motorized car. The system was confirmed to respond selectively to colliding objects even in complicated real-world situations.\",\"PeriodicalId\":227148,\"journal\":{\"name\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"6 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2007.4399089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4399089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time robot vision for collision avoidance inspired by neuronal circuits of insects
A real-time vision sensor for collision avoidance was designed. To respond selectively to approaching objects on direct collision course, the sensor employs an algorithm inspired by the visual nervous system in a locust, which can avoid a collision robustly by using visual information. We implemented the architecture of the locust nervous system with a compact hardware system which contains mixed analog- digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The response properties of the system were examined by using simulated movie images, and the system was tested also in real- world situations by loading it on a motorized car. The system was confirmed to respond selectively to colliding objects even in complicated real-world situations.