SKIMMR:机器辅助略读

V. Nováček, Gully A. Burns
{"title":"SKIMMR:机器辅助略读","authors":"V. Nováček, Gully A. Burns","doi":"10.1145/2451176.2451198","DOIUrl":null,"url":null,"abstract":"Unlike full reading, 'skim-reading' involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text using superficial text parsing / processing techniques. We provide a preliminary web-based tool (called 'SKIMMR') that generates a network of inter-related concepts from a set of documents. In SKIMMR, a user may browse the network to investigate the lexically-driven information space extracted from the documents. When a particular area of that space looks interesting to a user, the tool can then display the documents that are most relevant to the displayed concepts. We present this as a simple, viable methodology for browsing a document collection (such as a collection scientific research articles) in an attempt to limit the information overload of examining that document collection. This paper presents a motivation and overview of the approach, outlines technical details of the preliminary SKIMMR implementation, describes the tool from the user's perspective and summarises the related work.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"21 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SKIMMR: machine-aided skim-reading\",\"authors\":\"V. Nováček, Gully A. Burns\",\"doi\":\"10.1145/2451176.2451198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike full reading, 'skim-reading' involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text using superficial text parsing / processing techniques. We provide a preliminary web-based tool (called 'SKIMMR') that generates a network of inter-related concepts from a set of documents. In SKIMMR, a user may browse the network to investigate the lexically-driven information space extracted from the documents. When a particular area of that space looks interesting to a user, the tool can then display the documents that are most relevant to the displayed concepts. We present this as a simple, viable methodology for browsing a document collection (such as a collection scientific research articles) in an attempt to limit the information overload of examining that document collection. This paper presents a motivation and overview of the approach, outlines technical details of the preliminary SKIMMR implementation, describes the tool from the user's perspective and summarises the related work.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"21 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

与完整阅读不同,“略读”涉及快速浏览信息的过程,试图覆盖更多的材料,同时仍然能够保留对潜在内容的肤浅看法。在这项工作中,我们特别模拟了这种自然的人类活动,提供了一个动态的基于图形的实体视图,使用肤浅的文本解析/处理技术自动从文本中提取实体。我们提供了一个初步的基于网络的工具(称为“SKIMMR”),它从一组文档中生成一个相互关联的概念网络。在SKIMMR中,用户可以浏览网络来调查从文档中提取的词汇驱动的信息空间。当用户对该空间的某个特定区域感兴趣时,该工具就可以显示与所显示的概念最相关的文档。我们将其作为浏览文档集合(例如科学研究文章集合)的一种简单可行的方法,试图限制检查该文档集合的信息过载。本文介绍了该方法的动机和概述,概述了SKIMMR初步实现的技术细节,从用户的角度描述了该工具,并总结了相关工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SKIMMR: machine-aided skim-reading
Unlike full reading, 'skim-reading' involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text using superficial text parsing / processing techniques. We provide a preliminary web-based tool (called 'SKIMMR') that generates a network of inter-related concepts from a set of documents. In SKIMMR, a user may browse the network to investigate the lexically-driven information space extracted from the documents. When a particular area of that space looks interesting to a user, the tool can then display the documents that are most relevant to the displayed concepts. We present this as a simple, viable methodology for browsing a document collection (such as a collection scientific research articles) in an attempt to limit the information overload of examining that document collection. This paper presents a motivation and overview of the approach, outlines technical details of the preliminary SKIMMR implementation, describes the tool from the user's perspective and summarises the related work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信