{"title":"SKIMMR:机器辅助略读","authors":"V. Nováček, Gully A. Burns","doi":"10.1145/2451176.2451198","DOIUrl":null,"url":null,"abstract":"Unlike full reading, 'skim-reading' involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text using superficial text parsing / processing techniques. We provide a preliminary web-based tool (called 'SKIMMR') that generates a network of inter-related concepts from a set of documents. In SKIMMR, a user may browse the network to investigate the lexically-driven information space extracted from the documents. When a particular area of that space looks interesting to a user, the tool can then display the documents that are most relevant to the displayed concepts. We present this as a simple, viable methodology for browsing a document collection (such as a collection scientific research articles) in an attempt to limit the information overload of examining that document collection. This paper presents a motivation and overview of the approach, outlines technical details of the preliminary SKIMMR implementation, describes the tool from the user's perspective and summarises the related work.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"21 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SKIMMR: machine-aided skim-reading\",\"authors\":\"V. Nováček, Gully A. Burns\",\"doi\":\"10.1145/2451176.2451198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike full reading, 'skim-reading' involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text using superficial text parsing / processing techniques. We provide a preliminary web-based tool (called 'SKIMMR') that generates a network of inter-related concepts from a set of documents. In SKIMMR, a user may browse the network to investigate the lexically-driven information space extracted from the documents. When a particular area of that space looks interesting to a user, the tool can then display the documents that are most relevant to the displayed concepts. We present this as a simple, viable methodology for browsing a document collection (such as a collection scientific research articles) in an attempt to limit the information overload of examining that document collection. This paper presents a motivation and overview of the approach, outlines technical details of the preliminary SKIMMR implementation, describes the tool from the user's perspective and summarises the related work.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"21 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unlike full reading, 'skim-reading' involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text using superficial text parsing / processing techniques. We provide a preliminary web-based tool (called 'SKIMMR') that generates a network of inter-related concepts from a set of documents. In SKIMMR, a user may browse the network to investigate the lexically-driven information space extracted from the documents. When a particular area of that space looks interesting to a user, the tool can then display the documents that are most relevant to the displayed concepts. We present this as a simple, viable methodology for browsing a document collection (such as a collection scientific research articles) in an attempt to limit the information overload of examining that document collection. This paper presents a motivation and overview of the approach, outlines technical details of the preliminary SKIMMR implementation, describes the tool from the user's perspective and summarises the related work.