吸引椭球法在滑模控制器设计中的应用

J. Dávila, A. Poznyak
{"title":"吸引椭球法在滑模控制器设计中的应用","authors":"J. Dávila, A. Poznyak","doi":"10.1109/VSS.2010.5544627","DOIUrl":null,"url":null,"abstract":"The Attracting Ellipsoid Method is applied for the design of sliding mode controllers for linear systems subjected to matched and unmatched perturbations. The existence of first order actuators is considered and their time constants are designed to provide quasi-optimal practical stability. The technique is based on the existence of an attracting (invariant) ellipsoid such that the convergence to a quasi-minimal region of the origin is guaranteed. The design procedure is given in terms of the solution of a set of Linear Matrix Inequalities. A benchmark example illustrating the design is given.","PeriodicalId":407705,"journal":{"name":"2010 11th International Workshop on Variable Structure Systems (VSS)","volume":"33 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Attracting Ellipsoid Method application to designing of sliding mode controllers\",\"authors\":\"J. Dávila, A. Poznyak\",\"doi\":\"10.1109/VSS.2010.5544627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Attracting Ellipsoid Method is applied for the design of sliding mode controllers for linear systems subjected to matched and unmatched perturbations. The existence of first order actuators is considered and their time constants are designed to provide quasi-optimal practical stability. The technique is based on the existence of an attracting (invariant) ellipsoid such that the convergence to a quasi-minimal region of the origin is guaranteed. The design procedure is given in terms of the solution of a set of Linear Matrix Inequalities. A benchmark example illustrating the design is given.\",\"PeriodicalId\":407705,\"journal\":{\"name\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"33 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2010.5544627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2010.5544627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将吸引椭球法应用于匹配摄动和不匹配摄动下线性系统的滑模控制器设计。考虑了一阶作动器的存在性,设计了一阶作动器的时间常数以提供拟最优的实际稳定性。该方法基于吸引(不变)椭球的存在性,从而保证收敛到原点的拟极小区域。设计过程以求解一组线性矩阵不等式的形式给出。最后给出了一个典型的设计实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attracting Ellipsoid Method application to designing of sliding mode controllers
The Attracting Ellipsoid Method is applied for the design of sliding mode controllers for linear systems subjected to matched and unmatched perturbations. The existence of first order actuators is considered and their time constants are designed to provide quasi-optimal practical stability. The technique is based on the existence of an attracting (invariant) ellipsoid such that the convergence to a quasi-minimal region of the origin is guaranteed. The design procedure is given in terms of the solution of a set of Linear Matrix Inequalities. A benchmark example illustrating the design is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信