基于LSTM递归神经网络的高分辨率距离像雷达目标分类

V. Jithesh, M. Sagayaraj, K. Srinivasa
{"title":"基于LSTM递归神经网络的高分辨率距离像雷达目标分类","authors":"V. Jithesh, M. Sagayaraj, K. Srinivasa","doi":"10.1109/CIACT.2017.7977298","DOIUrl":null,"url":null,"abstract":"Positive and timely identification of targets is critical in any military scenario. Target identification from backscattered electromagnetic energy is an evolving area. The objective of this paper is to study the applicability of Long Short-Term Memory Recurrent Neural Network (LSTM RNN) for High Resolution Range Profile (HRRP) based Radar target classification. Simulated Radar Range Profile data is used here. Three Different Target models are considered in this study. The classification is performed using a LSTM RNN.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"30 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"LSTM recurrent neural networks for high resolution range profile based radar target classification\",\"authors\":\"V. Jithesh, M. Sagayaraj, K. Srinivasa\",\"doi\":\"10.1109/CIACT.2017.7977298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive and timely identification of targets is critical in any military scenario. Target identification from backscattered electromagnetic energy is an evolving area. The objective of this paper is to study the applicability of Long Short-Term Memory Recurrent Neural Network (LSTM RNN) for High Resolution Range Profile (HRRP) based Radar target classification. Simulated Radar Range Profile data is used here. Three Different Target models are considered in this study. The classification is performed using a LSTM RNN.\",\"PeriodicalId\":218079,\"journal\":{\"name\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"volume\":\"30 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIACT.2017.7977298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在任何军事情况下,积极和及时地确定目标都是至关重要的。后向散射电磁能目标识别是一个不断发展的领域。研究长短期记忆递归神经网络(LSTM RNN)在基于高分辨率距离像(HRRP)的雷达目标分类中的适用性。这里使用的是模拟雷达距离廓线数据。本研究考虑了三种不同的目标模型。使用LSTM RNN执行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSTM recurrent neural networks for high resolution range profile based radar target classification
Positive and timely identification of targets is critical in any military scenario. Target identification from backscattered electromagnetic energy is an evolving area. The objective of this paper is to study the applicability of Long Short-Term Memory Recurrent Neural Network (LSTM RNN) for High Resolution Range Profile (HRRP) based Radar target classification. Simulated Radar Range Profile data is used here. Three Different Target models are considered in this study. The classification is performed using a LSTM RNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信