O. Makinde, A. S. Eegunjobi, Onesmus Shuungula, S. N. N. Nguetchue
{"title":"流体磁化学反应和辐射非定常混合对流在多孔介质中通过平面表面","authors":"O. Makinde, A. S. Eegunjobi, Onesmus Shuungula, S. N. N. Nguetchue","doi":"10.1504/IJCSM.2018.096310","DOIUrl":null,"url":null,"abstract":"We investigate numerically in this paper, the mutual effects of thermal radiation, magnetic field and buoyancy forces on mixed convection of an electrically conducting chemically reacting incompressible viscous fluid flow over a heated vertical flat surface embedded in a porous medium. Suitable governing equations are obtained and changed to a system of couple nonlinear ordinary differential equations using desirable transformations. Boundary valued problems are therefore solved numerically using the Runge-Kutta-Fehlberg integration procedure coupled with shooting method. The results of the dimensionless velocity, temperature and concentration are then used to compute the skin friction, Nusselt number and Sherwood number. The influences of some of the flow parameters on each of these results are put up graphically and analysed.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"64 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hydromagnetic chemically reacting and radiating unsteady mixed convection Blasius flow past surface flat in a porous medium\",\"authors\":\"O. Makinde, A. S. Eegunjobi, Onesmus Shuungula, S. N. N. Nguetchue\",\"doi\":\"10.1504/IJCSM.2018.096310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate numerically in this paper, the mutual effects of thermal radiation, magnetic field and buoyancy forces on mixed convection of an electrically conducting chemically reacting incompressible viscous fluid flow over a heated vertical flat surface embedded in a porous medium. Suitable governing equations are obtained and changed to a system of couple nonlinear ordinary differential equations using desirable transformations. Boundary valued problems are therefore solved numerically using the Runge-Kutta-Fehlberg integration procedure coupled with shooting method. The results of the dimensionless velocity, temperature and concentration are then used to compute the skin friction, Nusselt number and Sherwood number. The influences of some of the flow parameters on each of these results are put up graphically and analysed.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"64 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2018.096310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.096310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydromagnetic chemically reacting and radiating unsteady mixed convection Blasius flow past surface flat in a porous medium
We investigate numerically in this paper, the mutual effects of thermal radiation, magnetic field and buoyancy forces on mixed convection of an electrically conducting chemically reacting incompressible viscous fluid flow over a heated vertical flat surface embedded in a porous medium. Suitable governing equations are obtained and changed to a system of couple nonlinear ordinary differential equations using desirable transformations. Boundary valued problems are therefore solved numerically using the Runge-Kutta-Fehlberg integration procedure coupled with shooting method. The results of the dimensionless velocity, temperature and concentration are then used to compute the skin friction, Nusselt number and Sherwood number. The influences of some of the flow parameters on each of these results are put up graphically and analysed.