特征级融合在多模态生物特征识别中的应用

S. Belhia, A. Gafour
{"title":"特征级融合在多模态生物特征识别中的应用","authors":"S. Belhia, A. Gafour","doi":"10.1109/INTECH.2012.6457798","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the fusion of two uni-modal biométric verification systems, based on face and offline signature. The extraction of Gabor filter parameters is studied in two ways. A new paradigm is proposed in machine learning as the spiking neuron network) called Liquid State Machine, strategy at fusion feature vector is used and tested. The experiment is performed on a multimodal database consisting of 400 images of 80 subjects (i.e. five images per subject,), three images are used for training and two are used for testing. Good performance is obtained by merging: the contribution of multi-modality is confirmed. This preliminary study confirms the feasibility of a robust and reliable multimodal biométrie system.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"10 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature level fusion in multimodal biometrie identification\",\"authors\":\"S. Belhia, A. Gafour\",\"doi\":\"10.1109/INTECH.2012.6457798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the fusion of two uni-modal biométric verification systems, based on face and offline signature. The extraction of Gabor filter parameters is studied in two ways. A new paradigm is proposed in machine learning as the spiking neuron network) called Liquid State Machine, strategy at fusion feature vector is used and tested. The experiment is performed on a multimodal database consisting of 400 images of 80 subjects (i.e. five images per subject,), three images are used for training and two are used for testing. Good performance is obtained by merging: the contribution of multi-modality is confirmed. This preliminary study confirms the feasibility of a robust and reliable multimodal biométrie system.\",\"PeriodicalId\":369113,\"journal\":{\"name\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"volume\":\"10 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTECH.2012.6457798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了两种基于人脸和离线签名的单模态生物身份验证系统的融合。研究了两种方法提取Gabor滤波器参数。提出了一种新的机器学习范式——脉冲神经元网络——液态机(Liquid State machine),并对融合特征向量的策略进行了测试。实验在一个多模态数据库上进行,该数据库由80个受试者的400张图像组成(即每个受试者5张图像),其中3张用于训练,2张用于测试。通过合并获得了良好的性能,证实了多模态的贡献。这一初步研究证实了一个健壮可靠的多模态生物交换系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature level fusion in multimodal biometrie identification
In this paper, we propose the fusion of two uni-modal biométric verification systems, based on face and offline signature. The extraction of Gabor filter parameters is studied in two ways. A new paradigm is proposed in machine learning as the spiking neuron network) called Liquid State Machine, strategy at fusion feature vector is used and tested. The experiment is performed on a multimodal database consisting of 400 images of 80 subjects (i.e. five images per subject,), three images are used for training and two are used for testing. Good performance is obtained by merging: the contribution of multi-modality is confirmed. This preliminary study confirms the feasibility of a robust and reliable multimodal biométrie system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信