双去噪自编码器特征学习用于癌症诊断

Yuqing Gao, Wing W. Y. Ng, Ting Wang, S. Kwong
{"title":"双去噪自编码器特征学习用于癌症诊断","authors":"Yuqing Gao, Wing W. Y. Ng, Ting Wang, S. Kwong","doi":"10.1109/ICCICC46617.2019.9146039","DOIUrl":null,"url":null,"abstract":"Microarray data analysis has emerged as a strong tool for cancer diagnosis. Nevertheless, researches on it are significantly challenging as the microarray datasets are imbalanced and high-dimensional with relatively small sample size. In this paper, we utilized Dual Denoising Autoencoder Features (DDAF), which integrates two Denoising Auto-Encoders (DAE) with different activation function to map the features for both minority and majority classes into a better classification representation. The experimental results on four typical microarray datasets show that the DDAF outperforms the Dual Autoencoder Features (DAF) and the Cost-sensitive Oversampling Stacked Denoising Auto-Encoder (CO-SDAE), rendering the robust ability for dimensionality reduction and imbalanced classification.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"35 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Denoising Autoencoder Feature Learning for Cancer Diagnosis\",\"authors\":\"Yuqing Gao, Wing W. Y. Ng, Ting Wang, S. Kwong\",\"doi\":\"10.1109/ICCICC46617.2019.9146039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray data analysis has emerged as a strong tool for cancer diagnosis. Nevertheless, researches on it are significantly challenging as the microarray datasets are imbalanced and high-dimensional with relatively small sample size. In this paper, we utilized Dual Denoising Autoencoder Features (DDAF), which integrates two Denoising Auto-Encoders (DAE) with different activation function to map the features for both minority and majority classes into a better classification representation. The experimental results on four typical microarray datasets show that the DDAF outperforms the Dual Autoencoder Features (DAF) and the Cost-sensitive Oversampling Stacked Denoising Auto-Encoder (CO-SDAE), rendering the robust ability for dimensionality reduction and imbalanced classification.\",\"PeriodicalId\":294902,\"journal\":{\"name\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"35 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC46617.2019.9146039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微阵列数据分析已成为癌症诊断的有力工具。然而,由于微阵列数据集不平衡、高维且样本量相对较小,因此对其研究具有很大的挑战性。在本文中,我们利用双去噪自编码器特征(Dual Denoising Autoencoder Features, DDAF),它集成了两个具有不同激活函数的去噪自编码器(Denoising auto - encoder, DAE),将少数类和多数类的特征映射为更好的分类表示。在4个典型微阵列数据集上的实验结果表明,DDAF算法优于双自编码器特征(Dual Autoencoder feature, DAF)和代价敏感过采样堆叠去噪自编码器(CO-SDAE)算法,具有较强的降维和不平衡分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Denoising Autoencoder Feature Learning for Cancer Diagnosis
Microarray data analysis has emerged as a strong tool for cancer diagnosis. Nevertheless, researches on it are significantly challenging as the microarray datasets are imbalanced and high-dimensional with relatively small sample size. In this paper, we utilized Dual Denoising Autoencoder Features (DDAF), which integrates two Denoising Auto-Encoders (DAE) with different activation function to map the features for both minority and majority classes into a better classification representation. The experimental results on four typical microarray datasets show that the DDAF outperforms the Dual Autoencoder Features (DAF) and the Cost-sensitive Oversampling Stacked Denoising Auto-Encoder (CO-SDAE), rendering the robust ability for dimensionality reduction and imbalanced classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信