全景图像的分层匹配

R. Glantz, M. Pelillo, W. Kropatsch
{"title":"全景图像的分层匹配","authors":"R. Glantz, M. Pelillo, W. Kropatsch","doi":"10.1109/ICIAP.2003.1234071","DOIUrl":null,"url":null,"abstract":"When matching regions from \"similar\" images, one typically has the problem of missing counterparts due to local or even global variations of segmentation fineness. Matching segmentation hierarchies, however, not only increases the chances of finding counterparts, but also allows us to exploit the manifold constraints coming from the topological relations between the regions in a hierarchy. In this paper we match hierarchies from panoramic images by constructing an association graph G/sub A/ whose vertices represent potential matches and whose edges indicate topological consistency. Specifically, a maximal [maximum] weight clique of GA corresponds to a topologically consistent mapping with maximal [maximum] total similarity. To find \"heavy\" cliques, we adapt a greedy pivoting-based heuristic to the weighted case. Experiments on pairs of panoramic images demonstrate the reliability of the results.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"4 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hierarchical matching of panoramic images\",\"authors\":\"R. Glantz, M. Pelillo, W. Kropatsch\",\"doi\":\"10.1109/ICIAP.2003.1234071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When matching regions from \\\"similar\\\" images, one typically has the problem of missing counterparts due to local or even global variations of segmentation fineness. Matching segmentation hierarchies, however, not only increases the chances of finding counterparts, but also allows us to exploit the manifold constraints coming from the topological relations between the regions in a hierarchy. In this paper we match hierarchies from panoramic images by constructing an association graph G/sub A/ whose vertices represent potential matches and whose edges indicate topological consistency. Specifically, a maximal [maximum] weight clique of GA corresponds to a topologically consistent mapping with maximal [maximum] total similarity. To find \\\"heavy\\\" cliques, we adapt a greedy pivoting-based heuristic to the weighted case. Experiments on pairs of panoramic images demonstrate the reliability of the results.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"4 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

当匹配来自“相似”图像的区域时,由于分割精细度的局部甚至全局变化,通常会出现缺失对应的问题。然而,匹配分割层次结构不仅增加了找到对应对象的机会,而且还允许我们利用来自层次结构中区域之间拓扑关系的多种约束。本文通过构造一个关联图G/sub A/来匹配全景图像的层次结构,该关联图的顶点表示潜在匹配,其边缘表示拓扑一致性。具体来说,遗传算法的最大[最大]权团对应于具有最大[最大]总相似度的拓扑一致映射。为了找到“重”集团,我们对加权情况采用了基于贪婪枢轴的启发式方法。对全景图像的实验验证了结果的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical matching of panoramic images
When matching regions from "similar" images, one typically has the problem of missing counterparts due to local or even global variations of segmentation fineness. Matching segmentation hierarchies, however, not only increases the chances of finding counterparts, but also allows us to exploit the manifold constraints coming from the topological relations between the regions in a hierarchy. In this paper we match hierarchies from panoramic images by constructing an association graph G/sub A/ whose vertices represent potential matches and whose edges indicate topological consistency. Specifically, a maximal [maximum] weight clique of GA corresponds to a topologically consistent mapping with maximal [maximum] total similarity. To find "heavy" cliques, we adapt a greedy pivoting-based heuristic to the weighted case. Experiments on pairs of panoramic images demonstrate the reliability of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信