基于摄像头的在线签名采集生物识别身份验证方法

D. Muramatsu, Kumiko Yasuda, T. Matsumoto
{"title":"基于摄像头的在线签名采集生物识别身份验证方法","authors":"D. Muramatsu, Kumiko Yasuda, T. Matsumoto","doi":"10.1109/ICDAR.2009.112","DOIUrl":null,"url":null,"abstract":"A camera-based online signature verification system is proposed in this paper. One web camera is used for data acquisition, and a sequential Monte Carlo method is used for tracking a pen tip. Several distances are computed from an online signature, and a fusion model trained by using AdaBoost combines the distances and computes a final score.Preliminary experiments were performed by using a private database. The proposed system yielded an equal error rate (EER) of 4.0%.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"22 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Biometric Person Authentication Method Using Camera-Based Online Signature Acquisition\",\"authors\":\"D. Muramatsu, Kumiko Yasuda, T. Matsumoto\",\"doi\":\"10.1109/ICDAR.2009.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A camera-based online signature verification system is proposed in this paper. One web camera is used for data acquisition, and a sequential Monte Carlo method is used for tracking a pen tip. Several distances are computed from an online signature, and a fusion model trained by using AdaBoost combines the distances and computes a final score.Preliminary experiments were performed by using a private database. The proposed system yielded an equal error rate (EER) of 4.0%.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"22 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种基于摄像机的在线签名验证系统。一个网络摄像头用于数据采集,一个顺序蒙特卡罗方法用于跟踪笔尖。从在线签名中计算几个距离,使用AdaBoost训练的融合模型将这些距离结合起来并计算最终分数。利用专用数据库进行了初步实验。该系统的误差率(EER)为4.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric Person Authentication Method Using Camera-Based Online Signature Acquisition
A camera-based online signature verification system is proposed in this paper. One web camera is used for data acquisition, and a sequential Monte Carlo method is used for tracking a pen tip. Several distances are computed from an online signature, and a fusion model trained by using AdaBoost combines the distances and computes a final score.Preliminary experiments were performed by using a private database. The proposed system yielded an equal error rate (EER) of 4.0%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信