共流射流槽型增推力推进系统的流体流动特性

B. Garrett
{"title":"共流射流槽型增推力推进系统的流体流动特性","authors":"B. Garrett","doi":"10.1115/fedsm2020-20006","DOIUrl":null,"url":null,"abstract":"\n The UAV industry is booming with investments in research and development on improving UAV systems. Current UAV machines are developed according to the quadcopter design which consists of a rotary propulsion system providing lift needed for flight. This design has some flaws; namely safety concerns and noise/vibration production both of which come stem from the rotary propulsion system. As such, a novel propulsion system using slip stream air passed through high performance slot jets is proposed and an analysis of the fluid characteristics is presented in this report.\n The test section for the experiment is developed using 3D printed ABS plastic airfoils modified with internal cavities where pressurized air is introduced and then expelled through slot jets on the pressure side of the airfoils. Entrainment processes develop in the system through high momentum fluid introduction into a sedentary secondary fluid. Entrainment is governed by pressure gradients and turbulent mixing and so turbulent quantities that measure these processes are extracted and analyzed according to the independent variable’s effects on these quantities. Pitot probe testing extracted one dimensional fluid information and PIV analysis is used to characterize the two-dimensional flow aspects.\n High slot jet velocities are seen to develop flows dominated by convection pushing momentum mixing downstream reducing the mixing in the system while low slot jet speeds exhibit higher mass fluxes and thrust development. Confinement spacing is seen to cause a decrease in flow velocity and thrust as the spacing is decreased for high speed runs. The most constricted cross sectional runs showed high momentum mixing and developed combined self-similar flow through higher boundary layer interactions and pressures, but this also hurts thrust development by minimizing secondary flows. The Angle of Attack of the assembly proved to be the most important variable. Outward angling showed the influence of coanda effects but also demonstrated the highest bulk fluid flow with turbulence driven momentum mixing. Inward angling created combined fluid flow downstream with high momentum mixing upstream driven by pressure. Minimal mixing is seen when the airfoils are not angled, and high recirculation zones occur along the boundaries. The optimal setup is seen when the airfoils are angled outwards where the highest thrust and bulk fluid movement is developed driven by the turbulent mixing induced by the increasing cross sectional area of the system.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Flow Characteristics of a Co-Flow Fluidic Slot Jet Thrust Augmentation Propulsion System\",\"authors\":\"B. Garrett\",\"doi\":\"10.1115/fedsm2020-20006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The UAV industry is booming with investments in research and development on improving UAV systems. Current UAV machines are developed according to the quadcopter design which consists of a rotary propulsion system providing lift needed for flight. This design has some flaws; namely safety concerns and noise/vibration production both of which come stem from the rotary propulsion system. As such, a novel propulsion system using slip stream air passed through high performance slot jets is proposed and an analysis of the fluid characteristics is presented in this report.\\n The test section for the experiment is developed using 3D printed ABS plastic airfoils modified with internal cavities where pressurized air is introduced and then expelled through slot jets on the pressure side of the airfoils. Entrainment processes develop in the system through high momentum fluid introduction into a sedentary secondary fluid. Entrainment is governed by pressure gradients and turbulent mixing and so turbulent quantities that measure these processes are extracted and analyzed according to the independent variable’s effects on these quantities. Pitot probe testing extracted one dimensional fluid information and PIV analysis is used to characterize the two-dimensional flow aspects.\\n High slot jet velocities are seen to develop flows dominated by convection pushing momentum mixing downstream reducing the mixing in the system while low slot jet speeds exhibit higher mass fluxes and thrust development. Confinement spacing is seen to cause a decrease in flow velocity and thrust as the spacing is decreased for high speed runs. The most constricted cross sectional runs showed high momentum mixing and developed combined self-similar flow through higher boundary layer interactions and pressures, but this also hurts thrust development by minimizing secondary flows. The Angle of Attack of the assembly proved to be the most important variable. Outward angling showed the influence of coanda effects but also demonstrated the highest bulk fluid flow with turbulence driven momentum mixing. Inward angling created combined fluid flow downstream with high momentum mixing upstream driven by pressure. Minimal mixing is seen when the airfoils are not angled, and high recirculation zones occur along the boundaries. The optimal setup is seen when the airfoils are angled outwards where the highest thrust and bulk fluid movement is developed driven by the turbulent mixing induced by the increasing cross sectional area of the system.\",\"PeriodicalId\":333138,\"journal\":{\"name\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着对改进无人机系统的研究和开发的投资,无人机行业正在蓬勃发展。目前的无人机机器是根据四轴飞行器设计发展的,它由一个提供飞行所需升力的旋转推进系统组成。这个设计有一些缺陷;即安全问题和噪音/振动的产生,这两者都源于旋转推进系统。因此,本文提出了一种利用滑流空气通过高性能槽式射流的新型推进系统,并对其流体特性进行了分析。实验的测试部分是使用3D打印的ABS塑料翼型开发的,该翼型内腔经过修改,在内腔中引入加压空气,然后通过翼型压力侧的狭缝射流排出。通过将高动量流体引入静止的二次流体,系统中会发生夹带过程。夹带是由压力梯度和湍流混合控制的,所以测量这些过程的湍流量是根据自变量对这些量的影响提取和分析的。皮托管探针测试提取一维流体信息,PIV分析用于表征二维流动方面。高间隙射流速度形成以对流推动动量混合为主导的流动,减少了系统内的混合,而低间隙射流速度则表现出更高的质量通量和推力发展。在高速运行时,封闭间距减小会导致流速和推力的降低。最狭窄的横截面段表现出高动量混合,并通过较高的边界层相互作用和压力形成组合自相似流,但这也通过最小化二次流而损害推力发展。装配的迎角被证明是最重要的变量。向外倾斜不仅受到coanda效应的影响,而且在湍流驱动动量混合的情况下也表现出最高的体积流体流动。向内倾斜形成了由压力驱动的下游流体流动和上游高动量混合的组合。最小的混合是看到当翼型没有角度,高再循环区沿边界发生。当翼型向外倾斜时,可以看到最佳的设置,其中最大的推力和大量流体运动是由系统横截面积增加引起的湍流混合驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid Flow Characteristics of a Co-Flow Fluidic Slot Jet Thrust Augmentation Propulsion System
The UAV industry is booming with investments in research and development on improving UAV systems. Current UAV machines are developed according to the quadcopter design which consists of a rotary propulsion system providing lift needed for flight. This design has some flaws; namely safety concerns and noise/vibration production both of which come stem from the rotary propulsion system. As such, a novel propulsion system using slip stream air passed through high performance slot jets is proposed and an analysis of the fluid characteristics is presented in this report. The test section for the experiment is developed using 3D printed ABS plastic airfoils modified with internal cavities where pressurized air is introduced and then expelled through slot jets on the pressure side of the airfoils. Entrainment processes develop in the system through high momentum fluid introduction into a sedentary secondary fluid. Entrainment is governed by pressure gradients and turbulent mixing and so turbulent quantities that measure these processes are extracted and analyzed according to the independent variable’s effects on these quantities. Pitot probe testing extracted one dimensional fluid information and PIV analysis is used to characterize the two-dimensional flow aspects. High slot jet velocities are seen to develop flows dominated by convection pushing momentum mixing downstream reducing the mixing in the system while low slot jet speeds exhibit higher mass fluxes and thrust development. Confinement spacing is seen to cause a decrease in flow velocity and thrust as the spacing is decreased for high speed runs. The most constricted cross sectional runs showed high momentum mixing and developed combined self-similar flow through higher boundary layer interactions and pressures, but this also hurts thrust development by minimizing secondary flows. The Angle of Attack of the assembly proved to be the most important variable. Outward angling showed the influence of coanda effects but also demonstrated the highest bulk fluid flow with turbulence driven momentum mixing. Inward angling created combined fluid flow downstream with high momentum mixing upstream driven by pressure. Minimal mixing is seen when the airfoils are not angled, and high recirculation zones occur along the boundaries. The optimal setup is seen when the airfoils are angled outwards where the highest thrust and bulk fluid movement is developed driven by the turbulent mixing induced by the increasing cross sectional area of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信