T. Senjyu, T. Yoshida, K. Uezato, N. Urasaki, S. K. Panda
{"title":"基于神经网络的超声电机无速度传感器控制","authors":"T. Senjyu, T. Yoshida, K. Uezato, N. Urasaki, S. K. Panda","doi":"10.1109/IECON.2003.1280003","DOIUrl":null,"url":null,"abstract":"This paper presents a speed sensorless control for ultrasonic motors using a neural network. In the proposed method, a three-layered NN is used with offline training. The drive frequency, the root mean square value of input voltage and the surface temperature of USM are used as the inputs of NN for speed estimator. The validity of the proposed method is confirmed by experimental results.","PeriodicalId":403239,"journal":{"name":"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speed sensorless control of ultrasonic motors using neural network\",\"authors\":\"T. Senjyu, T. Yoshida, K. Uezato, N. Urasaki, S. K. Panda\",\"doi\":\"10.1109/IECON.2003.1280003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a speed sensorless control for ultrasonic motors using a neural network. In the proposed method, a three-layered NN is used with offline training. The drive frequency, the root mean square value of input voltage and the surface temperature of USM are used as the inputs of NN for speed estimator. The validity of the proposed method is confirmed by experimental results.\",\"PeriodicalId\":403239,\"journal\":{\"name\":\"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2003.1280003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2003.1280003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed sensorless control of ultrasonic motors using neural network
This paper presents a speed sensorless control for ultrasonic motors using a neural network. In the proposed method, a three-layered NN is used with offline training. The drive frequency, the root mean square value of input voltage and the surface temperature of USM are used as the inputs of NN for speed estimator. The validity of the proposed method is confirmed by experimental results.