基于混合形态学的生物细胞图像分割方法

Jiezhen Xie, Xiaoqing Yu, Xuling Zheng
{"title":"基于混合形态学的生物细胞图像分割方法","authors":"Jiezhen Xie, Xiaoqing Yu, Xuling Zheng","doi":"10.1109/ISCID.2012.202","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel hybrid method for the segmentation and automatic counting of biological cell image. The method is based on techniques of morphology, thresholding and watershed. It performs well in low contrast image where gradient-based method may fail. Experimental results on practical cell images are shown in the paper with the emphasis on the comparisons between the novel hybrid method and the gradient-based methods: Sobel [1], Canny [2] and GAC [3] of level-set.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biological Cell Image Segmentation Using Novel Hybrid Morphology-Based Method\",\"authors\":\"Jiezhen Xie, Xiaoqing Yu, Xuling Zheng\",\"doi\":\"10.1109/ISCID.2012.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel hybrid method for the segmentation and automatic counting of biological cell image. The method is based on techniques of morphology, thresholding and watershed. It performs well in low contrast image where gradient-based method may fail. Experimental results on practical cell images are shown in the paper with the emphasis on the comparisons between the novel hybrid method and the gradient-based methods: Sobel [1], Canny [2] and GAC [3] of level-set.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"8 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的生物细胞图像分割与自动计数的混合方法。该方法基于形态学、阈值和分水岭技术。它在低对比度图像中表现良好,而基于梯度的方法可能会失败。文中给出了实际细胞图像上的实验结果,重点比较了新型混合方法与基于梯度的Sobel[1]、Canny[2]、GAC[3]的水平集方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological Cell Image Segmentation Using Novel Hybrid Morphology-Based Method
In this paper, we propose a novel hybrid method for the segmentation and automatic counting of biological cell image. The method is based on techniques of morphology, thresholding and watershed. It performs well in low contrast image where gradient-based method may fail. Experimental results on practical cell images are shown in the paper with the emphasis on the comparisons between the novel hybrid method and the gradient-based methods: Sobel [1], Canny [2] and GAC [3] of level-set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信