洞察机器学习技术检测异常用户

P. Kumar, Ajay Kumar, Kakoli Banerjee, Ayush Paharia, Arushi Singh, Anushka Chaudhary
{"title":"洞察机器学习技术检测异常用户","authors":"P. Kumar, Ajay Kumar, Kakoli Banerjee, Ayush Paharia, Arushi Singh, Anushka Chaudhary","doi":"10.1109/ISCON57294.2023.10112179","DOIUrl":null,"url":null,"abstract":"Anomalous user profile detection is a challenging problem in machine learning. Fake user accounts can be used for malicious activities and can cause extensive damage. This paper reviews the existing literature on user profile detection, categorizing the methods into supervised and unsupervised approaches. It also discusses the challenges and weaknesses of existing approaches and suggests possible areas for improvement. The paper provides a comprehensive overview and proposes a model to classify profiles as real or fake. Social media has made it easier for attackers to steal information and spread malicious content, which makes it important to detect and stop malicious profiles.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Insight into Machine Learning Techniques to Detect Anomalous Users\",\"authors\":\"P. Kumar, Ajay Kumar, Kakoli Banerjee, Ayush Paharia, Arushi Singh, Anushka Chaudhary\",\"doi\":\"10.1109/ISCON57294.2023.10112179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalous user profile detection is a challenging problem in machine learning. Fake user accounts can be used for malicious activities and can cause extensive damage. This paper reviews the existing literature on user profile detection, categorizing the methods into supervised and unsupervised approaches. It also discusses the challenges and weaknesses of existing approaches and suggests possible areas for improvement. The paper provides a comprehensive overview and proposes a model to classify profiles as real or fake. Social media has made it easier for attackers to steal information and spread malicious content, which makes it important to detect and stop malicious profiles.\",\"PeriodicalId\":280183,\"journal\":{\"name\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCON57294.2023.10112179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10112179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常用户配置文件检测是机器学习中的一个具有挑战性的问题。虚假用户帐户可以用于恶意活动,并可能造成广泛的损害。本文回顾了现有的关于用户轮廓检测的文献,将方法分为有监督和无监督两类。它还讨论了现有方法的挑战和弱点,并提出了可能改进的领域。本文提供了一个全面的概述,并提出了一个模型来区分真实或虚假的配置文件。社交媒体使得攻击者更容易窃取信息和传播恶意内容,这使得检测和阻止恶意配置文件变得非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Insight into Machine Learning Techniques to Detect Anomalous Users
Anomalous user profile detection is a challenging problem in machine learning. Fake user accounts can be used for malicious activities and can cause extensive damage. This paper reviews the existing literature on user profile detection, categorizing the methods into supervised and unsupervised approaches. It also discusses the challenges and weaknesses of existing approaches and suggests possible areas for improvement. The paper provides a comprehensive overview and proposes a model to classify profiles as real or fake. Social media has made it easier for attackers to steal information and spread malicious content, which makes it important to detect and stop malicious profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信