Claudio A. Parra, Travis Yu, Kyu Seon Yum, Arturo Garza, I. Scherson
{"title":"递归MaxSquare:缓存友好,并行,可伸缩的原位矩形矩阵转置","authors":"Claudio A. Parra, Travis Yu, Kyu Seon Yum, Arturo Garza, I. Scherson","doi":"10.1109/CSCI51800.2020.00228","DOIUrl":null,"url":null,"abstract":"An in situ rectangular matrix transposition algorithm is presented based on recursively partitioning an original rectangular matrix into a maximum size square matrix and a remaining rectangular sub-matrix. To transpose the maximum size square sub-matrix, a novel cache-friendly, parallel (multithreaded) and scalable in-place square matrix transposition procedure is proposed: it requires a total of Θ(n2/2) simple memory swaps, a single element temporary storage per thread, and does not make use of complex index arithmetic in the main transposition loop. Recursion is used to transpose the remaining rectangular sub-matrix. Dubbed Recursive MaxSquare, the novel proposed rectangular matrix in-place transposition algorithm uses a generalization of the perfect shuffle/unshuffle data permutation to stitch together the recursively transposed square matrices. The shuffle/unshuffle permutations are shown to be efficiently decomposed using basic vector/segment swaps, exchanges and/or cyclic shifts (rotations). A balanced parallel cycles-based transposition is also proposed for comparison.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive MaxSquare: Cache-friendly, Parallel, Scalable in situ Rectangular Matrix Transposition\",\"authors\":\"Claudio A. Parra, Travis Yu, Kyu Seon Yum, Arturo Garza, I. Scherson\",\"doi\":\"10.1109/CSCI51800.2020.00228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An in situ rectangular matrix transposition algorithm is presented based on recursively partitioning an original rectangular matrix into a maximum size square matrix and a remaining rectangular sub-matrix. To transpose the maximum size square sub-matrix, a novel cache-friendly, parallel (multithreaded) and scalable in-place square matrix transposition procedure is proposed: it requires a total of Θ(n2/2) simple memory swaps, a single element temporary storage per thread, and does not make use of complex index arithmetic in the main transposition loop. Recursion is used to transpose the remaining rectangular sub-matrix. Dubbed Recursive MaxSquare, the novel proposed rectangular matrix in-place transposition algorithm uses a generalization of the perfect shuffle/unshuffle data permutation to stitch together the recursively transposed square matrices. The shuffle/unshuffle permutations are shown to be efficiently decomposed using basic vector/segment swaps, exchanges and/or cyclic shifts (rotations). A balanced parallel cycles-based transposition is also proposed for comparison.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"18 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recursive MaxSquare: Cache-friendly, Parallel, Scalable in situ Rectangular Matrix Transposition
An in situ rectangular matrix transposition algorithm is presented based on recursively partitioning an original rectangular matrix into a maximum size square matrix and a remaining rectangular sub-matrix. To transpose the maximum size square sub-matrix, a novel cache-friendly, parallel (multithreaded) and scalable in-place square matrix transposition procedure is proposed: it requires a total of Θ(n2/2) simple memory swaps, a single element temporary storage per thread, and does not make use of complex index arithmetic in the main transposition loop. Recursion is used to transpose the remaining rectangular sub-matrix. Dubbed Recursive MaxSquare, the novel proposed rectangular matrix in-place transposition algorithm uses a generalization of the perfect shuffle/unshuffle data permutation to stitch together the recursively transposed square matrices. The shuffle/unshuffle permutations are shown to be efficiently decomposed using basic vector/segment swaps, exchanges and/or cyclic shifts (rotations). A balanced parallel cycles-based transposition is also proposed for comparison.