基于MATLAB的虹膜识别系统特征匹配

N. Imran, B. NarendraKumarRao
{"title":"基于MATLAB的虹膜识别系统特征匹配","authors":"N. Imran, B. NarendraKumarRao","doi":"10.18517/IJASEIT.7.5.2765","DOIUrl":null,"url":null,"abstract":"Iris recognition system is a secure human authentication in biometric technology. Iris recognition system consists of five stages. They are Feature matching, Feature encoding, Iris Normalization, Iris Segmentation and Image acquisition. In Image acquisition, the eye Image is captured from the CASIA database, the Image must have good quality with high resolution to process next steps. In Iris Segmentation, the Iris part is detected by using Hough transform technique and Canny Edge detection technique. Iris from an eye Image segmented. In normalization, the Iris region is converted from the circular region into a rectangular region by using polar transform technique. In feature encoding, the normalized Iris can be encoded in the form of binary bit format by using Gabor filter techniques.  In feature matching, the encoded Iris template is compared with database eye Image of Iris template and generated the matching score by using Hamming distance technique and Euclidean distance technique. Based on the matching score, we get the result. This project is developed using Image processing toolbox of Matlab software.","PeriodicalId":226712,"journal":{"name":"J. Multim. Process. Technol.","volume":"25 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feature Matching in Iris Recognition System using MATLAB\",\"authors\":\"N. Imran, B. NarendraKumarRao\",\"doi\":\"10.18517/IJASEIT.7.5.2765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iris recognition system is a secure human authentication in biometric technology. Iris recognition system consists of five stages. They are Feature matching, Feature encoding, Iris Normalization, Iris Segmentation and Image acquisition. In Image acquisition, the eye Image is captured from the CASIA database, the Image must have good quality with high resolution to process next steps. In Iris Segmentation, the Iris part is detected by using Hough transform technique and Canny Edge detection technique. Iris from an eye Image segmented. In normalization, the Iris region is converted from the circular region into a rectangular region by using polar transform technique. In feature encoding, the normalized Iris can be encoded in the form of binary bit format by using Gabor filter techniques.  In feature matching, the encoded Iris template is compared with database eye Image of Iris template and generated the matching score by using Hamming distance technique and Euclidean distance technique. Based on the matching score, we get the result. This project is developed using Image processing toolbox of Matlab software.\",\"PeriodicalId\":226712,\"journal\":{\"name\":\"J. Multim. Process. Technol.\",\"volume\":\"25 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Multim. Process. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18517/IJASEIT.7.5.2765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Multim. Process. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/IJASEIT.7.5.2765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

虹膜识别系统是生物识别技术中一种安全的人体身份认证技术。虹膜识别系统包括五个阶段。它们是特征匹配、特征编码、虹膜归一化、虹膜分割和图像采集。在图像采集中,眼睛图像是从CASIA数据库中采集的,图像必须具有高质量和高分辨率才能进行下一步处理。在虹膜分割中,利用Hough变换技术和Canny边缘检测技术检测虹膜部分。从人眼图像中分割虹膜。在归一化中,利用极坐标变换技术将虹膜区域由圆形区域转换为矩形区域。在特征编码中,利用Gabor滤波技术将归一化后的虹膜编码为二进制位格式。在特征匹配方面,将编码后的虹膜模板与虹膜模板的数据库眼图像进行比较,并利用汉明距离技术和欧几里得距离技术生成匹配分数。根据匹配分数,我们得到结果。本课题是利用Matlab软件中的图像处理工具箱进行开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Matching in Iris Recognition System using MATLAB
Iris recognition system is a secure human authentication in biometric technology. Iris recognition system consists of five stages. They are Feature matching, Feature encoding, Iris Normalization, Iris Segmentation and Image acquisition. In Image acquisition, the eye Image is captured from the CASIA database, the Image must have good quality with high resolution to process next steps. In Iris Segmentation, the Iris part is detected by using Hough transform technique and Canny Edge detection technique. Iris from an eye Image segmented. In normalization, the Iris region is converted from the circular region into a rectangular region by using polar transform technique. In feature encoding, the normalized Iris can be encoded in the form of binary bit format by using Gabor filter techniques.  In feature matching, the encoded Iris template is compared with database eye Image of Iris template and generated the matching score by using Hamming distance technique and Euclidean distance technique. Based on the matching score, we get the result. This project is developed using Image processing toolbox of Matlab software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信