偏置估计的体积方法:对收缩估计器的论证

Can Bikcora, S. Weiland
{"title":"偏置估计的体积方法:对收缩估计器的论证","authors":"Can Bikcora, S. Weiland","doi":"10.1109/ICDSP.2016.7868637","DOIUrl":null,"url":null,"abstract":"This work proposes a new approach, named as the volumetric design (VD), of developing biased estimators of deterministic parameters that are known in advance to belong to a compact subset in the parameter space. For analytical tractability, this approach is demonstrated on the choice of the shrinkage parameter of an estimator that scales the celebrated minimum variance unbiased estimator (MVUE) towards zero, where a spherical set is taken as the a priori knowledge on the parameters and the mean-squared error is adopted as the performance measure. Similar to the existing methods of the minimax (MX) and the deepest minimum criterion (DMC) estimators, the VD estimator also belongs to the class of admissible estimators that dominate the MVUE on the provided parameter (spherical) set. However, as its fundamental difference, it corresponds to the estimator that has the largest total relative volume on which it dominates the other estimators in this class, thereby achieving the best volumetric robustness in this manner.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"15 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A volumetric approach to biased estimation: Demonstration on shrinkage estimators\",\"authors\":\"Can Bikcora, S. Weiland\",\"doi\":\"10.1109/ICDSP.2016.7868637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a new approach, named as the volumetric design (VD), of developing biased estimators of deterministic parameters that are known in advance to belong to a compact subset in the parameter space. For analytical tractability, this approach is demonstrated on the choice of the shrinkage parameter of an estimator that scales the celebrated minimum variance unbiased estimator (MVUE) towards zero, where a spherical set is taken as the a priori knowledge on the parameters and the mean-squared error is adopted as the performance measure. Similar to the existing methods of the minimax (MX) and the deepest minimum criterion (DMC) estimators, the VD estimator also belongs to the class of admissible estimators that dominate the MVUE on the provided parameter (spherical) set. However, as its fundamental difference, it corresponds to the estimator that has the largest total relative volume on which it dominates the other estimators in this class, thereby achieving the best volumetric robustness in this manner.\",\"PeriodicalId\":206199,\"journal\":{\"name\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"volume\":\"15 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2016.7868637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种新的方法,称为体积设计(VD),用于开发确定性参数的有偏估计量,这些参数事先已知属于参数空间中的紧子集。对于分析可追溯性,该方法在一个估计器的收缩参数的选择上得到了证明,该估计器将著名的最小方差无偏估计器(MVUE)缩放到零,其中一个球面集被用作参数的先验知识,均方误差被用作性能度量。与现有的极大极小估计(MX)和最深最小准则估计(DMC)方法类似,VD估计也属于在给定参数(球面)集上支配MVUE的可容许估计类。然而,作为它的根本区别,它对应于具有最大的总相对体积的估计量,在这类估计量中它优于其他估计量,从而以这种方式获得最佳的体积鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A volumetric approach to biased estimation: Demonstration on shrinkage estimators
This work proposes a new approach, named as the volumetric design (VD), of developing biased estimators of deterministic parameters that are known in advance to belong to a compact subset in the parameter space. For analytical tractability, this approach is demonstrated on the choice of the shrinkage parameter of an estimator that scales the celebrated minimum variance unbiased estimator (MVUE) towards zero, where a spherical set is taken as the a priori knowledge on the parameters and the mean-squared error is adopted as the performance measure. Similar to the existing methods of the minimax (MX) and the deepest minimum criterion (DMC) estimators, the VD estimator also belongs to the class of admissible estimators that dominate the MVUE on the provided parameter (spherical) set. However, as its fundamental difference, it corresponds to the estimator that has the largest total relative volume on which it dominates the other estimators in this class, thereby achieving the best volumetric robustness in this manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信