可验证混合临界系统基于负荷的可调度性分析

Haohan Li, Sanjoy Baruah
{"title":"可验证混合临界系统基于负荷的可调度性分析","authors":"Haohan Li, Sanjoy Baruah","doi":"10.1145/1879021.1879035","DOIUrl":null,"url":null,"abstract":"Many safety-critical embedded systems are subject to certification requirements. However, only a subset of the functionality of the system may be safety-critical and hence subject to certification; the rest of the functionality is non safety-critical and does not need to be certified. Certification requirements in such mixed-criticality systems give rise to some interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In prior work, we have proposed a priority-based algorithm for scheduling such mixed-criticality systems on preemptive uniprocessor platforms. In this paper, we derive a sufficient schedulability condition for efficiently determining whether a given mixed-criticality system can be successfully scheduled by this algorithm. We show that this algorithm (and the associated schedulability test) is strictly superior to prior algorithms that have been used for scheduling mixed-criticality systems needing certification.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Load-based schedulability analysis of certifiable mixed-criticality systems\",\"authors\":\"Haohan Li, Sanjoy Baruah\",\"doi\":\"10.1145/1879021.1879035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many safety-critical embedded systems are subject to certification requirements. However, only a subset of the functionality of the system may be safety-critical and hence subject to certification; the rest of the functionality is non safety-critical and does not need to be certified. Certification requirements in such mixed-criticality systems give rise to some interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In prior work, we have proposed a priority-based algorithm for scheduling such mixed-criticality systems on preemptive uniprocessor platforms. In this paper, we derive a sufficient schedulability condition for efficiently determining whether a given mixed-criticality system can be successfully scheduled by this algorithm. We show that this algorithm (and the associated schedulability test) is strictly superior to prior algorithms that have been used for scheduling mixed-criticality systems needing certification.\",\"PeriodicalId\":143573,\"journal\":{\"name\":\"International Conference on Embedded Software\",\"volume\":\"3 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1879021.1879035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1879021.1879035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

许多安全关键型嵌入式系统都要遵守认证要求。然而,只有系统功能的一个子集可能是安全关键的,因此需要认证;其余的功能是非安全关键的,不需要认证。这种混合临界系统中的认证要求引起了一些有趣的调度问题,这些问题不能用传统调度理论中的技术令人满意地解决。在之前的工作中,我们提出了一种基于优先级的算法,用于在抢占式单处理器平台上调度这种混合临界系统。本文给出了一个充分的可调度性条件,可以有效地确定给定的混合临界系统是否可以用该算法成功调度。我们表明,该算法(以及相关的可调度性测试)严格优于先前用于调度需要认证的混合临界系统的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load-based schedulability analysis of certifiable mixed-criticality systems
Many safety-critical embedded systems are subject to certification requirements. However, only a subset of the functionality of the system may be safety-critical and hence subject to certification; the rest of the functionality is non safety-critical and does not need to be certified. Certification requirements in such mixed-criticality systems give rise to some interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In prior work, we have proposed a priority-based algorithm for scheduling such mixed-criticality systems on preemptive uniprocessor platforms. In this paper, we derive a sufficient schedulability condition for efficiently determining whether a given mixed-criticality system can be successfully scheduled by this algorithm. We show that this algorithm (and the associated schedulability test) is strictly superior to prior algorithms that have been used for scheduling mixed-criticality systems needing certification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信