加速大规模排序和选择的两两比较

L. Hong, Jun Luo, Ying Zhong
{"title":"加速大规模排序和选择的两两比较","authors":"L. Hong, Jun Luo, Ying Zhong","doi":"10.5555/3042094.3042199","DOIUrl":null,"url":null,"abstract":"Classical sequential ranking-and-selection (R&S) procedures require all pairwise comparisons after collecting one additional observation from each surviving system, which is typically an O(k2) operation where k is the number of systems. When the number of systems is large (e.g., millions), these comparisons can be very costly and may significantly slow down the R&S procedures. In this paper we revise KN procedure slightly and show that one may reduce the computational complexity of all pairwise comparisons to an O(k) operation, thus significantly reducing the computational burden. Numerical experiments show that the computational time reduces by orders of magnitude even for moderate numbers of systems.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"50 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Speeding up pairwise comparisons for large scale ranking and selection\",\"authors\":\"L. Hong, Jun Luo, Ying Zhong\",\"doi\":\"10.5555/3042094.3042199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical sequential ranking-and-selection (R&S) procedures require all pairwise comparisons after collecting one additional observation from each surviving system, which is typically an O(k2) operation where k is the number of systems. When the number of systems is large (e.g., millions), these comparisons can be very costly and may significantly slow down the R&S procedures. In this paper we revise KN procedure slightly and show that one may reduce the computational complexity of all pairwise comparisons to an O(k) operation, thus significantly reducing the computational burden. Numerical experiments show that the computational time reduces by orders of magnitude even for moderate numbers of systems.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"50 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/3042094.3042199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3042094.3042199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

经典的顺序排序和选择(R&S)过程需要在从每个幸存的系统中收集一个额外的观察值之后进行所有的两两比较,这通常是一个O(k2)操作,其中k是系统的数量。当系统的数量很大(例如,数百万)时,这些比较可能会非常昂贵,并且可能会大大减慢R&S过程。在本文中,我们稍微修改了KN过程,并表明可以将所有两两比较的计算复杂度降低到O(k)操作,从而显着降低计算负担。数值实验表明,即使是中等数量的系统,计算时间也能减少几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speeding up pairwise comparisons for large scale ranking and selection
Classical sequential ranking-and-selection (R&S) procedures require all pairwise comparisons after collecting one additional observation from each surviving system, which is typically an O(k2) operation where k is the number of systems. When the number of systems is large (e.g., millions), these comparisons can be very costly and may significantly slow down the R&S procedures. In this paper we revise KN procedure slightly and show that one may reduce the computational complexity of all pairwise comparisons to an O(k) operation, thus significantly reducing the computational burden. Numerical experiments show that the computational time reduces by orders of magnitude even for moderate numbers of systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信