二阶控制系统的遗传神经模糊控制器

D. Pelusi
{"title":"二阶控制系统的遗传神经模糊控制器","authors":"D. Pelusi","doi":"10.1109/EMS.2011.49","DOIUrl":null,"url":null,"abstract":"Overshoot, settling and rise time define the timing parameters of a control system. The main challenge is to attempt to reduce these parameters to achieve good control performances. The target is to obtain the optimal timing values. In this paper, three different approaches are presented to improve the control performances of second order control systems. The first approach is related to the design of a PID controller based on Ziegler-Nichols tuning formula. An optimal fuzzy controller optimized through Genetic Algorithms represents the second approach. Following this way, the best membership functions are chosen with the help of the darwinian theory of natural selection. The third approach uses the neural networks to achieve adaptive neuro-fuzzy controllers. In this way, the fuzzy controller assumes self-tuning capability. The results show that the designed PID controller has a very slow rise time. The genetic-fuzzy controller gives good values of overshoot and settling time. The best global results are achieved by neuro-fuzzy controller which presents good values of overshoot, settling and rise time. Moreover, our neuro-fuzzy controller improves the results of some conventional PID and fuzzy controllers.","PeriodicalId":131364,"journal":{"name":"2011 UKSim 5th European Symposium on Computer Modeling and Simulation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Genetic-Neuro-Fuzzy Controllers for Second Order Control Systems\",\"authors\":\"D. Pelusi\",\"doi\":\"10.1109/EMS.2011.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overshoot, settling and rise time define the timing parameters of a control system. The main challenge is to attempt to reduce these parameters to achieve good control performances. The target is to obtain the optimal timing values. In this paper, three different approaches are presented to improve the control performances of second order control systems. The first approach is related to the design of a PID controller based on Ziegler-Nichols tuning formula. An optimal fuzzy controller optimized through Genetic Algorithms represents the second approach. Following this way, the best membership functions are chosen with the help of the darwinian theory of natural selection. The third approach uses the neural networks to achieve adaptive neuro-fuzzy controllers. In this way, the fuzzy controller assumes self-tuning capability. The results show that the designed PID controller has a very slow rise time. The genetic-fuzzy controller gives good values of overshoot and settling time. The best global results are achieved by neuro-fuzzy controller which presents good values of overshoot, settling and rise time. Moreover, our neuro-fuzzy controller improves the results of some conventional PID and fuzzy controllers.\",\"PeriodicalId\":131364,\"journal\":{\"name\":\"2011 UKSim 5th European Symposium on Computer Modeling and Simulation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 UKSim 5th European Symposium on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMS.2011.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 UKSim 5th European Symposium on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2011.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

超调量、稳定时间和上升时间定义了控制系统的定时参数。主要的挑战是试图减少这些参数以获得良好的控制性能。目标是获得最优的定时值。本文提出了三种不同的方法来改善二阶控制系统的控制性能。第一种方法是基于齐格勒-尼科尔斯整定公式的PID控制器设计。通过遗传算法优化的最优模糊控制器是第二种方法。按照这种方法,在达尔文的自然选择理论的帮助下,选择最佳的隶属函数。第三种方法是利用神经网络实现自适应神经模糊控制器。这样,模糊控制器具有自整定能力。结果表明,所设计的PID控制器具有非常慢的上升时间。遗传模糊控制器具有较好的超调量和稳定时间。神经模糊控制器具有较好的超调量、稳定时间和上升时间,具有较好的全局控制效果。此外,我们的神经模糊控制器改善了一些传统的PID和模糊控制器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic-Neuro-Fuzzy Controllers for Second Order Control Systems
Overshoot, settling and rise time define the timing parameters of a control system. The main challenge is to attempt to reduce these parameters to achieve good control performances. The target is to obtain the optimal timing values. In this paper, three different approaches are presented to improve the control performances of second order control systems. The first approach is related to the design of a PID controller based on Ziegler-Nichols tuning formula. An optimal fuzzy controller optimized through Genetic Algorithms represents the second approach. Following this way, the best membership functions are chosen with the help of the darwinian theory of natural selection. The third approach uses the neural networks to achieve adaptive neuro-fuzzy controllers. In this way, the fuzzy controller assumes self-tuning capability. The results show that the designed PID controller has a very slow rise time. The genetic-fuzzy controller gives good values of overshoot and settling time. The best global results are achieved by neuro-fuzzy controller which presents good values of overshoot, settling and rise time. Moreover, our neuro-fuzzy controller improves the results of some conventional PID and fuzzy controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信