微分层的线性亚变量方程

Frederik Benirschke, B. Dozier, S. Grushevsky
{"title":"微分层的线性亚变量方程","authors":"Frederik Benirschke, B. Dozier, S. Grushevsky","doi":"10.2140/gt.2022.26.2773","DOIUrl":null,"url":null,"abstract":"For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining linear equations in period coordinates for $M$ near its boundary, and prove that the closure is locally a toric variety. As applications, we give a fundamentally new proof of a generalization of the cylinder deformation theorem of Wright to the case of meromorphic strata, and construct a smooth compactification of the Hurwitz space of covers of the Riemann sphere.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"61 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Equations of linear subvarieties of strata of differentials\",\"authors\":\"Frederik Benirschke, B. Dozier, S. Grushevsky\",\"doi\":\"10.2140/gt.2022.26.2773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining linear equations in period coordinates for $M$ near its boundary, and prove that the closure is locally a toric variety. As applications, we give a fundamentally new proof of a generalization of the cylinder deformation theorem of Wright to the case of meromorphic strata, and construct a smooth compactification of the Hurwitz space of covers of the Riemann sphere.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"61 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.2773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对于一类亚纯微分地层的线性子簇$M$,研究了它在Bainbridge-Chen-Gendron-Grushevsky-Moller构造的多尺度紧化中的闭性。在$M$边界附近证明了在周期坐标下定义线性方程类型的各种限制条件,并证明了闭包局部是一个环面变分。作为应用,我们给出了Wright柱体变形定理在亚纯地层情况下的推广的一个全新的证明,并构造了Riemann球上盖的Hurwitz空间的光滑紧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equations of linear subvarieties of strata of differentials
For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining linear equations in period coordinates for $M$ near its boundary, and prove that the closure is locally a toric variety. As applications, we give a fundamentally new proof of a generalization of the cylinder deformation theorem of Wright to the case of meromorphic strata, and construct a smooth compactification of the Hurwitz space of covers of the Riemann sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信