基于遗传算法的铀矿带特征子集选择的应用

Yiping Tong, Z. Cai, Jia Wu
{"title":"基于遗传算法的铀矿带特征子集选择的应用","authors":"Yiping Tong, Z. Cai, Jia Wu","doi":"10.1109/CICN.2013.137","DOIUrl":null,"url":null,"abstract":"Analyses show that the absorption band position determines the type of mineral radically. The paper proposes a method of applying GA (Genetic Algorithm) to the selection of the uranium mineral band feature sub-set. First, on the fundamental of the correlation between feature-based metrics: information entropy, information gain, symmetrical uncertainty and type space, the GA which is a random search algorithm uses the four standards as fitness functions to select the best feature points. Then set three different sub-intervals, extend the best feature points to the best feature sub-sets. Finally, the best feature sub-sets are used for classification. Experiments show that information gain and symmetrical uncertainty that based on genetic algorithm are better than based on CFS in classification.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"16 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Uranium Mineral Band Feature Sub-set Selection Based on Genetic Algorithm\",\"authors\":\"Yiping Tong, Z. Cai, Jia Wu\",\"doi\":\"10.1109/CICN.2013.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyses show that the absorption band position determines the type of mineral radically. The paper proposes a method of applying GA (Genetic Algorithm) to the selection of the uranium mineral band feature sub-set. First, on the fundamental of the correlation between feature-based metrics: information entropy, information gain, symmetrical uncertainty and type space, the GA which is a random search algorithm uses the four standards as fitness functions to select the best feature points. Then set three different sub-intervals, extend the best feature points to the best feature sub-sets. Finally, the best feature sub-sets are used for classification. Experiments show that information gain and symmetrical uncertainty that based on genetic algorithm are better than based on CFS in classification.\",\"PeriodicalId\":415274,\"journal\":{\"name\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"16 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2013.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析表明,吸收带的位置从根本上决定了矿物的类型。提出了一种将遗传算法应用于铀矿物带特征子集选择的方法。首先,基于特征度量:信息熵、信息增益、对称不确定性和类型空间之间的相关性,遗传算法作为一种随机搜索算法,使用这四个标准作为适应度函数来选择最佳特征点。然后设置三个不同的子区间,将最佳特征点扩展到最佳特征子集。最后,利用最佳特征子集进行分类。实验表明,基于遗传算法的信息增益和对称不确定性优于基于CFS的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Uranium Mineral Band Feature Sub-set Selection Based on Genetic Algorithm
Analyses show that the absorption band position determines the type of mineral radically. The paper proposes a method of applying GA (Genetic Algorithm) to the selection of the uranium mineral band feature sub-set. First, on the fundamental of the correlation between feature-based metrics: information entropy, information gain, symmetrical uncertainty and type space, the GA which is a random search algorithm uses the four standards as fitness functions to select the best feature points. Then set three different sub-intervals, extend the best feature points to the best feature sub-sets. Finally, the best feature sub-sets are used for classification. Experiments show that information gain and symmetrical uncertainty that based on genetic algorithm are better than based on CFS in classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信