基于支持向量机的越南语文献共同参考解析

Duc-Trong Le, Mai-Vu Tran, Tri-Thanh Nguyen, Quang-Thuy Ha
{"title":"基于支持向量机的越南语文献共同参考解析","authors":"Duc-Trong Le, Mai-Vu Tran, Tri-Thanh Nguyen, Quang-Thuy Ha","doi":"10.1109/IALP.2011.63","DOIUrl":null,"url":null,"abstract":"Co-reference resolution task still poses many challenges due to the complexity of the Vietnamese language, and the lack of standard Vietnamese linguistic resources. Based on the mention-pair model of Rahman and Ng. (2009) and the characteristics of Vietnamese, this paper proposes a model using support vector machines (SVM) to solve the co-reference in Vietnamese documents. The corpus used in experiments to evaluate the proposed model was constructed from 200 articles in cultural and social categories from vnexpress.net newspaper website. The results of the initial experiments of the proposed model achieved 76.51% accuracy in comparison with that of the baseline model of 73.79% with similar features.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"64 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Co-reference Resolution in Vietnamese Documents Based on Support Vector Machines\",\"authors\":\"Duc-Trong Le, Mai-Vu Tran, Tri-Thanh Nguyen, Quang-Thuy Ha\",\"doi\":\"10.1109/IALP.2011.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-reference resolution task still poses many challenges due to the complexity of the Vietnamese language, and the lack of standard Vietnamese linguistic resources. Based on the mention-pair model of Rahman and Ng. (2009) and the characteristics of Vietnamese, this paper proposes a model using support vector machines (SVM) to solve the co-reference in Vietnamese documents. The corpus used in experiments to evaluate the proposed model was constructed from 200 articles in cultural and social categories from vnexpress.net newspaper website. The results of the initial experiments of the proposed model achieved 76.51% accuracy in comparison with that of the baseline model of 73.79% with similar features.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"64 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于越南语的复杂性和缺乏标准的越南语语言资源,共同指称解析任务仍然面临许多挑战。基于Rahman和Ng的提及对模型。(2009)和越南语的特点,本文提出了一个使用支持向量机(SVM)的模型来解决越南语文档中的共同引用问题。实验中使用的语料库是由vexpress.net报纸网站上的200篇文化和社会类文章构建而成的。初步实验结果表明,该模型的准确率为76.51%,而相似特征的基线模型的准确率为73.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-reference Resolution in Vietnamese Documents Based on Support Vector Machines
Co-reference resolution task still poses many challenges due to the complexity of the Vietnamese language, and the lack of standard Vietnamese linguistic resources. Based on the mention-pair model of Rahman and Ng. (2009) and the characteristics of Vietnamese, this paper proposes a model using support vector machines (SVM) to solve the co-reference in Vietnamese documents. The corpus used in experiments to evaluate the proposed model was constructed from 200 articles in cultural and social categories from vnexpress.net newspaper website. The results of the initial experiments of the proposed model achieved 76.51% accuracy in comparison with that of the baseline model of 73.79% with similar features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信