Qingzhi Liu, Long Cheng, T. Ozcelebi, John Murphy, J. Lukkien
{"title":"边缘计算中物联网网络动态聚类的深度强化学习","authors":"Qingzhi Liu, Long Cheng, T. Ozcelebi, John Murphy, J. Lukkien","doi":"10.1109/CCGRID.2019.00077","DOIUrl":null,"url":null,"abstract":"Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Deep Reinforcement Learning for IoT Network Dynamic Clustering in Edge Computing\",\"authors\":\"Qingzhi Liu, Long Cheng, T. Ozcelebi, John Murphy, J. Lukkien\",\"doi\":\"10.1109/CCGRID.2019.00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.\",\"PeriodicalId\":234571,\"journal\":{\"name\":\"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2019.00077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning for IoT Network Dynamic Clustering in Edge Computing
Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.