边缘计算中物联网网络动态聚类的深度强化学习

Qingzhi Liu, Long Cheng, T. Ozcelebi, John Murphy, J. Lukkien
{"title":"边缘计算中物联网网络动态聚类的深度强化学习","authors":"Qingzhi Liu, Long Cheng, T. Ozcelebi, John Murphy, J. Lukkien","doi":"10.1109/CCGRID.2019.00077","DOIUrl":null,"url":null,"abstract":"Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Deep Reinforcement Learning for IoT Network Dynamic Clustering in Edge Computing\",\"authors\":\"Qingzhi Liu, Long Cheng, T. Ozcelebi, John Murphy, J. Lukkien\",\"doi\":\"10.1109/CCGRID.2019.00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.\",\"PeriodicalId\":234571,\"journal\":{\"name\":\"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2019.00077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

处理大型物联网(IoT)网络中产生的大数据是对现有技术的挑战。迄今为止,已经提出了许多网络聚类方法来提高物联网数据收集的性能。然而,它们中的大多数都关注于使用静态拓扑划分网络,因此它们在处理网络中移动对象的情况时不是最优的。此外,据我们所知,他们都没有考虑过边缘服务器的计算性能。为了解决这些问题,我们提出了一种基于深度强化学习(DRL)的边缘计算高效物联网网络动态聚类解决方案。我们的方法既可以满足物联网网络的数据通信需求,也可以满足边缘服务器的负载平衡需求,从而为未来的高性能物联网数据分析提供了巨大的机会。我们使用深度q -学习网络(DQN)模型实现了我们的方法,我们的初步实验结果表明,与目前的静态基准解决方案相比,DQN解决方案在聚类划分方面可以获得更高的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning for IoT Network Dynamic Clustering in Edge Computing
Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信