S. Lyuksyutov, L. Barabanova, Jeffrey A. McCausland
{"title":"为什么石墨烯和氟化石墨烯薄膜上的正交各向异性摩擦很重要","authors":"S. Lyuksyutov, L. Barabanova, Jeffrey A. McCausland","doi":"10.1117/12.2531767","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrate that graphene and graphene fluoride manifest different coefficients of sliding friction at the edges (graphene fluoride from 5.8×10-3 to 4.9×10-1; graphene from 8.2×10-3 to 3.3×10-1) of a sheet sample versus the interior (graphene fluoride from 5.1×10-3 to 1.5×10-1; graphene from 2.5×10-2 to 2.3×10-1) under ambient humidity conditions (~ 40-60%). Atomic force microscopy (AFM) was used to prove the friction coefficients show distinct directional dependence between graphene and graphene fluoride.","PeriodicalId":380113,"journal":{"name":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Why orthotropic friction is important on graphene and graphene fluoride thin films\",\"authors\":\"S. Lyuksyutov, L. Barabanova, Jeffrey A. McCausland\",\"doi\":\"10.1117/12.2531767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally demonstrate that graphene and graphene fluoride manifest different coefficients of sliding friction at the edges (graphene fluoride from 5.8×10-3 to 4.9×10-1; graphene from 8.2×10-3 to 3.3×10-1) of a sheet sample versus the interior (graphene fluoride from 5.1×10-3 to 1.5×10-1; graphene from 2.5×10-2 to 2.3×10-1) under ambient humidity conditions (~ 40-60%). Atomic force microscopy (AFM) was used to prove the friction coefficients show distinct directional dependence between graphene and graphene fluoride.\",\"PeriodicalId\":380113,\"journal\":{\"name\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2531767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2531767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Why orthotropic friction is important on graphene and graphene fluoride thin films
We experimentally demonstrate that graphene and graphene fluoride manifest different coefficients of sliding friction at the edges (graphene fluoride from 5.8×10-3 to 4.9×10-1; graphene from 8.2×10-3 to 3.3×10-1) of a sheet sample versus the interior (graphene fluoride from 5.1×10-3 to 1.5×10-1; graphene from 2.5×10-2 to 2.3×10-1) under ambient humidity conditions (~ 40-60%). Atomic force microscopy (AFM) was used to prove the friction coefficients show distinct directional dependence between graphene and graphene fluoride.