A. Brunton, S. Wuhrer, Chang Shu, P. Bose, E. Demaine
{"title":"用曲线展开法填充三角形网格中的孔洞","authors":"A. Brunton, S. Wuhrer, Chang Shu, P. Bose, E. Demaine","doi":"10.1109/SMI.2009.5170165","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to automatically fill holes in triangulated models. Each hole is filled using a minimum energy surface that is obtained in three steps. First, we unfold the hole boundary onto a plane using energy minimization. Second, we triangulate the unfolded hole using a constrained Delaunay triangulation. Third, we embed the triangular mesh as a minimum energy surface in ℝ3. The running time of the method depends primarily on the size of the hole boundary and not on the size of the model, thereby making the method applicable to large models. Our experiments demonstrate the applicability of the algorithm to the problem of filling holes bounded by highly curved boundaries in large models.","PeriodicalId":237863,"journal":{"name":"2009 IEEE International Conference on Shape Modeling and Applications","volume":"35 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Filling holes in triangular meshes by curve unfolding\",\"authors\":\"A. Brunton, S. Wuhrer, Chang Shu, P. Bose, E. Demaine\",\"doi\":\"10.1109/SMI.2009.5170165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to automatically fill holes in triangulated models. Each hole is filled using a minimum energy surface that is obtained in three steps. First, we unfold the hole boundary onto a plane using energy minimization. Second, we triangulate the unfolded hole using a constrained Delaunay triangulation. Third, we embed the triangular mesh as a minimum energy surface in ℝ3. The running time of the method depends primarily on the size of the hole boundary and not on the size of the model, thereby making the method applicable to large models. Our experiments demonstrate the applicability of the algorithm to the problem of filling holes bounded by highly curved boundaries in large models.\",\"PeriodicalId\":237863,\"journal\":{\"name\":\"2009 IEEE International Conference on Shape Modeling and Applications\",\"volume\":\"35 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Shape Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2009.5170165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2009.5170165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Filling holes in triangular meshes by curve unfolding
We propose a novel approach to automatically fill holes in triangulated models. Each hole is filled using a minimum energy surface that is obtained in three steps. First, we unfold the hole boundary onto a plane using energy minimization. Second, we triangulate the unfolded hole using a constrained Delaunay triangulation. Third, we embed the triangular mesh as a minimum energy surface in ℝ3. The running time of the method depends primarily on the size of the hole boundary and not on the size of the model, thereby making the method applicable to large models. Our experiments demonstrate the applicability of the algorithm to the problem of filling holes bounded by highly curved boundaries in large models.