基于原对象的运动敏感通道视觉显著性模型

J. Molin, A. Russell, Stefan Mihalas, E. Niebur, R. Etienne-Cummings
{"title":"基于原对象的运动敏感通道视觉显著性模型","authors":"J. Molin, A. Russell, Stefan Mihalas, E. Niebur, R. Etienne-Cummings","doi":"10.1109/BioCAS.2013.6679631","DOIUrl":null,"url":null,"abstract":"The human visual system has the inherent capability of using selective attention to rapidly process visual information across visual scenes. Early models of visual saliency are purely feature-based and compute visual attention for static scenes. However, to model the human visual system, it is important to also consider temporal change that may exist within the scene when computing visual saliency. We present a biologically-plausible model of dynamic visual attention that computes saliency as a function of proto-objects modulated by an independent motion-sensitive channel. This motion-sensitive channel extracts motion information via biologically plausible temporal filters modeling simple cell receptive fields. By using KL divergence measurements, we show that this model performs significantly better than chance in predicting eye fixations. Furthermore, in our experiments, this model outperforms the Itti, 2005 dynamic saliency model and insignificantly differs from the graph-based visual dynamic saliency model in performance.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"257 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Proto-object based visual saliency model with a motion-sensitive channel\",\"authors\":\"J. Molin, A. Russell, Stefan Mihalas, E. Niebur, R. Etienne-Cummings\",\"doi\":\"10.1109/BioCAS.2013.6679631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human visual system has the inherent capability of using selective attention to rapidly process visual information across visual scenes. Early models of visual saliency are purely feature-based and compute visual attention for static scenes. However, to model the human visual system, it is important to also consider temporal change that may exist within the scene when computing visual saliency. We present a biologically-plausible model of dynamic visual attention that computes saliency as a function of proto-objects modulated by an independent motion-sensitive channel. This motion-sensitive channel extracts motion information via biologically plausible temporal filters modeling simple cell receptive fields. By using KL divergence measurements, we show that this model performs significantly better than chance in predicting eye fixations. Furthermore, in our experiments, this model outperforms the Itti, 2005 dynamic saliency model and insignificantly differs from the graph-based visual dynamic saliency model in performance.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"257 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

人类视觉系统具有利用选择性注意快速处理视觉信息的内在能力。早期的视觉显著性模型纯粹是基于特征的,并计算静态场景的视觉注意力。然而,为了模拟人类视觉系统,在计算视觉显著性时,考虑场景中可能存在的时间变化是很重要的。我们提出了一个生物学上合理的动态视觉注意模型,该模型将显着性计算为由独立运动敏感通道调节的原始物体的函数。这种运动敏感通道通过模拟简单细胞接受野的生物学上合理的时间过滤器提取运动信息。通过使用KL散度测量,我们表明该模型在预测眼睛注视方面明显优于机会。此外,在我们的实验中,该模型优于Itti, 2005动态显著性模型,在性能上与基于图形的视觉动态显著性模型差异不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proto-object based visual saliency model with a motion-sensitive channel
The human visual system has the inherent capability of using selective attention to rapidly process visual information across visual scenes. Early models of visual saliency are purely feature-based and compute visual attention for static scenes. However, to model the human visual system, it is important to also consider temporal change that may exist within the scene when computing visual saliency. We present a biologically-plausible model of dynamic visual attention that computes saliency as a function of proto-objects modulated by an independent motion-sensitive channel. This motion-sensitive channel extracts motion information via biologically plausible temporal filters modeling simple cell receptive fields. By using KL divergence measurements, we show that this model performs significantly better than chance in predicting eye fixations. Furthermore, in our experiments, this model outperforms the Itti, 2005 dynamic saliency model and insignificantly differs from the graph-based visual dynamic saliency model in performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信