{"title":"三元无限字的性质","authors":"J. Currie, Pascal Ochem, N. Rampersad, J. Shallit","doi":"10.48550/arXiv.2206.01776","DOIUrl":null,"url":null,"abstract":"We study the properties of the ternary infinite word\np = 012102101021012101021012⋯,\nthat is, the fixed point of the map h : 0 → 01, 1 → 21, 2 → 0. We determine its factor complexity, critical exponent, and prove that it is 2-balanced. We compute its abelian complexity and determine the lengths of its bispecial factors. Finally, we give a characterization of p in terms of avoided factors.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"197 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Properties of a Ternary Infinite Word\",\"authors\":\"J. Currie, Pascal Ochem, N. Rampersad, J. Shallit\",\"doi\":\"10.48550/arXiv.2206.01776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the properties of the ternary infinite word\\np = 012102101021012101021012⋯,\\nthat is, the fixed point of the map h : 0 → 01, 1 → 21, 2 → 0. We determine its factor complexity, critical exponent, and prove that it is 2-balanced. We compute its abelian complexity and determine the lengths of its bispecial factors. Finally, we give a characterization of p in terms of avoided factors.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"197 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.01776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.01776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the properties of the ternary infinite word
p = 012102101021012101021012⋯,
that is, the fixed point of the map h : 0 → 01, 1 → 21, 2 → 0. We determine its factor complexity, critical exponent, and prove that it is 2-balanced. We compute its abelian complexity and determine the lengths of its bispecial factors. Finally, we give a characterization of p in terms of avoided factors.