{"title":"利用低秩汉克尔结构的多通道缺失数据恢复","authors":"Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow","doi":"10.1109/CAMSAP.2017.8313138","DOIUrl":null,"url":null,"abstract":"This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"99 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Channel missing data recovery by exploiting the low-rank hankel structures\",\"authors\":\"Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow\",\"doi\":\"10.1109/CAMSAP.2017.8313138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"99 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Channel missing data recovery by exploiting the low-rank hankel structures
This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.