利用低秩汉克尔结构的多通道缺失数据恢复

Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow
{"title":"利用低秩汉克尔结构的多通道缺失数据恢复","authors":"Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow","doi":"10.1109/CAMSAP.2017.8313138","DOIUrl":null,"url":null,"abstract":"This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"99 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Channel missing data recovery by exploiting the low-rank hankel structures\",\"authors\":\"Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow\",\"doi\":\"10.1109/CAMSAP.2017.8313138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"99 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文利用数据中的时间相关性研究了低秩矩阵补全问题。将低秩矩阵与动力系统(如电力系统)联系起来,我们提出了一种新的模型,称为多通道低秩汉克尔矩阵,以表征时间序列集合中的固有低维结构。提出了一种线性收敛的加速多通道快速迭代硬阈值法(AM-FIHT)来恢复缺失点。与传统的低等级完井方法相比,成功采出所需的观测层数显著减少。利用PMU的实测数据进行了数值实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Channel missing data recovery by exploiting the low-rank hankel structures
This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信