K. Mao, Xianqiang Li, Chen Wei, Zhiyuan Ma, Xixiu Wu
{"title":"VLF天线终端电场分布的数值分析","authors":"K. Mao, Xianqiang Li, Chen Wei, Zhiyuan Ma, Xixiu Wu","doi":"10.1109/ICCT46805.2019.8947227","DOIUrl":null,"url":null,"abstract":"When the high-power VLF (Very Low Frequency) communication system is in operation, dielectric loss and corresponding temperature rising will occur at the terminal of the antenna due to the alternating high electric field intensity environment. Based on the theoretical analysis of dielectric loss and temperature rise, the distribution of electric field intensity at the terminal of antenna and its influencing factors are numerically analyzed by establishing a three-dimensional simulation model. The results show that the electric field intensity varies linearly with the increase of the voltage of the antenna terminal; however, the working frequency has little effect on the electric field intensity. Finally, the reduction effect of a corona ring on the electric field intensity at the antenna terminal is analyzed.","PeriodicalId":306112,"journal":{"name":"2019 IEEE 19th International Conference on Communication Technology (ICCT)","volume":"46 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical Analysis of Electric Field Distribution at the Terminal of VLF Antenna\",\"authors\":\"K. Mao, Xianqiang Li, Chen Wei, Zhiyuan Ma, Xixiu Wu\",\"doi\":\"10.1109/ICCT46805.2019.8947227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the high-power VLF (Very Low Frequency) communication system is in operation, dielectric loss and corresponding temperature rising will occur at the terminal of the antenna due to the alternating high electric field intensity environment. Based on the theoretical analysis of dielectric loss and temperature rise, the distribution of electric field intensity at the terminal of antenna and its influencing factors are numerically analyzed by establishing a three-dimensional simulation model. The results show that the electric field intensity varies linearly with the increase of the voltage of the antenna terminal; however, the working frequency has little effect on the electric field intensity. Finally, the reduction effect of a corona ring on the electric field intensity at the antenna terminal is analyzed.\",\"PeriodicalId\":306112,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Communication Technology (ICCT)\",\"volume\":\"46 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT46805.2019.8947227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT46805.2019.8947227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Analysis of Electric Field Distribution at the Terminal of VLF Antenna
When the high-power VLF (Very Low Frequency) communication system is in operation, dielectric loss and corresponding temperature rising will occur at the terminal of the antenna due to the alternating high electric field intensity environment. Based on the theoretical analysis of dielectric loss and temperature rise, the distribution of electric field intensity at the terminal of antenna and its influencing factors are numerically analyzed by establishing a three-dimensional simulation model. The results show that the electric field intensity varies linearly with the increase of the voltage of the antenna terminal; however, the working frequency has little effect on the electric field intensity. Finally, the reduction effect of a corona ring on the electric field intensity at the antenna terminal is analyzed.