利用拉格朗日松弛法研究了MIP期权值的界

F. Zhou
{"title":"利用拉格朗日松弛法研究了MIP期权值的界","authors":"F. Zhou","doi":"10.1109/AIMSEC.2011.6009912","DOIUrl":null,"url":null,"abstract":"according to study the a Maximal Lifetime with Constrained Energy problem (MLCE)in a sensors net, we discuss the bound of the option value of mix integer program (MIP). Since the Maximun of the MIP is NP complete problem, so the exact solution can not be obtained, but the bound of the option value is exist. This paper use Lagrangian relaxation method to derive theoretical upper bound on the optimal value of the MIP problem.","PeriodicalId":214011,"journal":{"name":"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)","volume":"186 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research the bound of the option value of MIP by Lagrangian relaxation\",\"authors\":\"F. Zhou\",\"doi\":\"10.1109/AIMSEC.2011.6009912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"according to study the a Maximal Lifetime with Constrained Energy problem (MLCE)in a sensors net, we discuss the bound of the option value of mix integer program (MIP). Since the Maximun of the MIP is NP complete problem, so the exact solution can not be obtained, but the bound of the option value is exist. This paper use Lagrangian relaxation method to derive theoretical upper bound on the optimal value of the MIP problem.\",\"PeriodicalId\":214011,\"journal\":{\"name\":\"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)\",\"volume\":\"186 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMSEC.2011.6009912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMSEC.2011.6009912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对传感器网络中具有约束能量的最大寿命问题(MLCE)的研究,讨论了混合整数规划(MIP)的选择值界。由于MIP的极大值是NP完全问题,因此无法得到精确解,但存在选项值的界。本文利用拉格朗日松弛法导出了MIP问题最优值的理论上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research the bound of the option value of MIP by Lagrangian relaxation
according to study the a Maximal Lifetime with Constrained Energy problem (MLCE)in a sensors net, we discuss the bound of the option value of mix integer program (MIP). Since the Maximun of the MIP is NP complete problem, so the exact solution can not be obtained, but the bound of the option value is exist. This paper use Lagrangian relaxation method to derive theoretical upper bound on the optimal value of the MIP problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信