地震信号识别的径向基网络

S. Goodman
{"title":"地震信号识别的径向基网络","authors":"S. Goodman","doi":"10.1109/SSST.1993.522800","DOIUrl":null,"url":null,"abstract":"An application of the radial basis function network to seismic waveform classification is presented. The network performs generalization and discrimination of input patterns using an external teacher. Modifications to this scheme are described. They include: (1) changing the size of the spheres; (2) using a random walk scheme during testing; (3) gradually decreasing the initial radii to avoid overlap of two distinct regions; (4) a conflict resolution mechanism; and (5) a simple means of decreasing the sphere radius. The applications to seismic signals include using the moments over a sliding window and the first several points of a wavelet. The speed of training of this network exceeds that of backpropagation with the same error rate.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A radial basis network for seismic signal discrimination\",\"authors\":\"S. Goodman\",\"doi\":\"10.1109/SSST.1993.522800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of the radial basis function network to seismic waveform classification is presented. The network performs generalization and discrimination of input patterns using an external teacher. Modifications to this scheme are described. They include: (1) changing the size of the spheres; (2) using a random walk scheme during testing; (3) gradually decreasing the initial radii to avoid overlap of two distinct regions; (4) a conflict resolution mechanism; and (5) a simple means of decreasing the sphere radius. The applications to seismic signals include using the moments over a sliding window and the first several points of a wavelet. The speed of training of this network exceeds that of backpropagation with the same error rate.\",\"PeriodicalId\":260036,\"journal\":{\"name\":\"1993 (25th) Southeastern Symposium on System Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 (25th) Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1993.522800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了径向基函数网络在地震波形分类中的应用。该网络使用外部教师对输入模式进行泛化和识别。描述了对该方案的修改。它们包括:(1)改变球体的大小;(2)在测试过程中采用随机漫步方案;(3)逐渐减小初始半径,避免两个不同区域重叠;(4)冲突解决机制;(5)减小球半径的简单方法。地震信号的应用包括使用滑动窗口上的矩和小波的前几个点。在相同错误率下,该网络的训练速度超过了反向传播的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A radial basis network for seismic signal discrimination
An application of the radial basis function network to seismic waveform classification is presented. The network performs generalization and discrimination of input patterns using an external teacher. Modifications to this scheme are described. They include: (1) changing the size of the spheres; (2) using a random walk scheme during testing; (3) gradually decreasing the initial radii to avoid overlap of two distinct regions; (4) a conflict resolution mechanism; and (5) a simple means of decreasing the sphere radius. The applications to seismic signals include using the moments over a sliding window and the first several points of a wavelet. The speed of training of this network exceeds that of backpropagation with the same error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信