多项式矩阵的单模补全

Wei Zhou, G. Labahn
{"title":"多项式矩阵的单模补全","authors":"Wei Zhou, G. Labahn","doi":"10.1145/2608628.2608640","DOIUrl":null,"url":null,"abstract":"Given a rectangular matrix <b>F</b> ∈ K[<i>x</i>]<sup><i>m</i>x<i>n</i></sup> with <i>m</i> < <i>n</i> of univariate polynomials over a field K. we give an efficient algorithm for computing a unimodular completion of <b>F</b>. Our algorithm is deterministic and computes such a completion, when it exists, with cost <i>O</i>~ (<i>n</i><sup>ω</sup><i>s</i>) field operations from K. Here <i>s</i> is the average of the <i>m</i> largest column degrees of <b>F</b> and ω is the exponent on the cost of matrix multiplication. Here <i>O</i>~ is big-O but with log factors removed. If a unimodular completion does not exist for <b>F</b>, our algorithm computes a unimodular completion for a right cofactor of a column basis of <b>F</b>, or equivalently, computes a completion that preserves the generalized determinant.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Unimodular completion of polynomial matrices\",\"authors\":\"Wei Zhou, G. Labahn\",\"doi\":\"10.1145/2608628.2608640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a rectangular matrix <b>F</b> ∈ K[<i>x</i>]<sup><i>m</i>x<i>n</i></sup> with <i>m</i> < <i>n</i> of univariate polynomials over a field K. we give an efficient algorithm for computing a unimodular completion of <b>F</b>. Our algorithm is deterministic and computes such a completion, when it exists, with cost <i>O</i>~ (<i>n</i><sup>ω</sup><i>s</i>) field operations from K. Here <i>s</i> is the average of the <i>m</i> largest column degrees of <b>F</b> and ω is the exponent on the cost of matrix multiplication. Here <i>O</i>~ is big-O but with log factors removed. If a unimodular completion does not exist for <b>F</b>, our algorithm computes a unimodular completion for a right cofactor of a column basis of <b>F</b>, or equivalently, computes a completion that preserves the generalized determinant.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

给定一个矩形矩阵F∈K[x]mxn,其中m < n为域K上的单变量多项式,我们给出了一个计算F的单模补全的有效算法。我们的算法是确定性的,当它存在时,计算这样的补全,从K开始的域运算的代价为O~ (nωs)。这里s是F的m个最大列度的平均值,ω是矩阵乘法代价的指数。这里O~是大O,但是去掉了对数因子。如果F不存在单模补齐,我们的算法计算F的列基的右余因子的单模补齐,或者等价地计算一个保留广义行列式的补齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unimodular completion of polynomial matrices
Given a rectangular matrix F ∈ K[x]mxn with m < n of univariate polynomials over a field K. we give an efficient algorithm for computing a unimodular completion of F. Our algorithm is deterministic and computes such a completion, when it exists, with cost O~ (nωs) field operations from K. Here s is the average of the m largest column degrees of F and ω is the exponent on the cost of matrix multiplication. Here O~ is big-O but with log factors removed. If a unimodular completion does not exist for F, our algorithm computes a unimodular completion for a right cofactor of a column basis of F, or equivalently, computes a completion that preserves the generalized determinant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信