多处理器Plessey角检测器中平台可扩展任务分区和多级缓冲

Guan Yu, G. Lafruit, P. Schelkens
{"title":"多处理器Plessey角检测器中平台可扩展任务分区和多级缓冲","authors":"Guan Yu, G. Lafruit, P. Schelkens","doi":"10.1109/ACSD.2007.58","DOIUrl":null,"url":null,"abstract":"The Plessey corner detector is a key technological component in scene analysis, stereo matching, and object tracking. Due to its high computation complexity, earlier fast implementations mainly focused on hardware implementations. This paper explores the viability of a multi-processor software implementation. A scalable task partitioning for efficiently mapping the Plessey algorithm on a multi-processor platform is proposed. The task partition ensures platform scalability, low inter-processor communication overhead and a well-balanced workload in each task. In addition, a multilevel buffering scheme is presented, minimizing the external memory accesses in each task to one image pixel read per calculated corner response value. The effectiveness of the proposed task partition and buffering scheme has been verified on (i) a cycle accurate simulator with shared memory and (ii) a multiple-TI-C64 DSP board using a message passing paradigm. The proposed solution combines good platform scalability with an additional 30% speedup gain over straightforward parallelization schemes.","PeriodicalId":323657,"journal":{"name":"Seventh International Conference on Application of Concurrency to System Design (ACSD 2007)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Platform-scalable Task Partition and Multilevel Buffering in Multi-processor Plessey Corner Detector\",\"authors\":\"Guan Yu, G. Lafruit, P. Schelkens\",\"doi\":\"10.1109/ACSD.2007.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Plessey corner detector is a key technological component in scene analysis, stereo matching, and object tracking. Due to its high computation complexity, earlier fast implementations mainly focused on hardware implementations. This paper explores the viability of a multi-processor software implementation. A scalable task partitioning for efficiently mapping the Plessey algorithm on a multi-processor platform is proposed. The task partition ensures platform scalability, low inter-processor communication overhead and a well-balanced workload in each task. In addition, a multilevel buffering scheme is presented, minimizing the external memory accesses in each task to one image pixel read per calculated corner response value. The effectiveness of the proposed task partition and buffering scheme has been verified on (i) a cycle accurate simulator with shared memory and (ii) a multiple-TI-C64 DSP board using a message passing paradigm. The proposed solution combines good platform scalability with an additional 30% speedup gain over straightforward parallelization schemes.\",\"PeriodicalId\":323657,\"journal\":{\"name\":\"Seventh International Conference on Application of Concurrency to System Design (ACSD 2007)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Application of Concurrency to System Design (ACSD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2007.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Application of Concurrency to System Design (ACSD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2007.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

普莱西角探测器是场景分析、立体匹配和目标跟踪的关键技术组件。由于计算复杂度高,早期的快速实现主要集中在硬件实现上。本文探讨了多处理器软件实现的可行性。为了在多处理器平台上有效地映射Plessey算法,提出了一种可扩展的任务划分方法。任务分区确保了平台可伸缩性、较低的处理器间通信开销以及每个任务中均衡的工作负载。此外,提出了一种多级缓冲方案,将每个任务中的外部存储器访问减少到每个计算的角响应值读取一个图像像素。所提出的任务分区和缓冲方案的有效性已在(i)具有共享内存的周期精确模拟器和(ii)使用消息传递范式的多ti - c64 DSP板上得到验证。所提出的解决方案结合了良好的平台可伸缩性和比直接并行方案额外30%的加速增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Platform-scalable Task Partition and Multilevel Buffering in Multi-processor Plessey Corner Detector
The Plessey corner detector is a key technological component in scene analysis, stereo matching, and object tracking. Due to its high computation complexity, earlier fast implementations mainly focused on hardware implementations. This paper explores the viability of a multi-processor software implementation. A scalable task partitioning for efficiently mapping the Plessey algorithm on a multi-processor platform is proposed. The task partition ensures platform scalability, low inter-processor communication overhead and a well-balanced workload in each task. In addition, a multilevel buffering scheme is presented, minimizing the external memory accesses in each task to one image pixel read per calculated corner response value. The effectiveness of the proposed task partition and buffering scheme has been verified on (i) a cycle accurate simulator with shared memory and (ii) a multiple-TI-C64 DSP board using a message passing paradigm. The proposed solution combines good platform scalability with an additional 30% speedup gain over straightforward parallelization schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信