在FiQA 2018任务1:预测财经推文和新闻标题的情绪和方面

Dayan de França Costa, Nádia Félix Felipe Da Silva
{"title":"在FiQA 2018任务1:预测财经推文和新闻标题的情绪和方面","authors":"Dayan de França Costa, Nádia Félix Felipe Da Silva","doi":"10.1145/3184558.3191828","DOIUrl":null,"url":null,"abstract":"This paper describes our system which participate in Task 1 of FiQA 2018. The task's focuses was to predict sentiment and aspects of financial microblog posts and headlines. The sentiment analysis for a specific company had to be predicted using a scale between -1 and 1, while the aspect prediction had to be predicted using a set of aspects which was given in train data. We had used Support Vector Regression (SVR) to predict the sentiments in both cases (microblog posts and headlines).","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"124 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"INF-UFG at FiQA 2018 Task 1: Predicting Sentiments and Aspects on Financial Tweets and News Headlines\",\"authors\":\"Dayan de França Costa, Nádia Félix Felipe Da Silva\",\"doi\":\"10.1145/3184558.3191828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our system which participate in Task 1 of FiQA 2018. The task's focuses was to predict sentiment and aspects of financial microblog posts and headlines. The sentiment analysis for a specific company had to be predicted using a scale between -1 and 1, while the aspect prediction had to be predicted using a set of aspects which was given in train data. We had used Support Vector Regression (SVR) to predict the sentiments in both cases (microblog posts and headlines).\",\"PeriodicalId\":235572,\"journal\":{\"name\":\"Companion Proceedings of the The Web Conference 2018\",\"volume\":\"124 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the The Web Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184558.3191828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了我们参与FiQA 2018任务1的系统。这项任务的重点是预测财经微博帖子和头条新闻的情绪和方面。特定公司的情感分析必须使用-1到1之间的刻度进行预测,而方面预测必须使用列车数据中给出的一组方面进行预测。我们使用支持向量回归(SVR)来预测两种情况下(微博帖子和头条新闻)的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INF-UFG at FiQA 2018 Task 1: Predicting Sentiments and Aspects on Financial Tweets and News Headlines
This paper describes our system which participate in Task 1 of FiQA 2018. The task's focuses was to predict sentiment and aspects of financial microblog posts and headlines. The sentiment analysis for a specific company had to be predicted using a scale between -1 and 1, while the aspect prediction had to be predicted using a set of aspects which was given in train data. We had used Support Vector Regression (SVR) to predict the sentiments in both cases (microblog posts and headlines).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信