深度神经网络的交织器设计

Sourya Dey, P. Beerel, K. Chugg
{"title":"深度神经网络的交织器设计","authors":"Sourya Dey, P. Beerel, K. Chugg","doi":"10.1109/ACSSC.2017.8335713","DOIUrl":null,"url":null,"abstract":"We propose a class of interleavers for a novel deep neural network (DNN) architecture that uses algorithmically predetermined, structured sparsity to significantly lower memory and computational requirements, and speed up training. The interleavers guarantee clash-free memory accesses to eliminate idle operational cycles, optimize spread and dispersion to improve network performance, and are designed to ease the complexity of memory address computations in hardware. We present a design algorithm with mathematical proofs for these properties. We also explore interleaver variations and analyze the behavior of neural networks as a function of interleaver metrics.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Interleaver design for deep neural networks\",\"authors\":\"Sourya Dey, P. Beerel, K. Chugg\",\"doi\":\"10.1109/ACSSC.2017.8335713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a class of interleavers for a novel deep neural network (DNN) architecture that uses algorithmically predetermined, structured sparsity to significantly lower memory and computational requirements, and speed up training. The interleavers guarantee clash-free memory accesses to eliminate idle operational cycles, optimize spread and dispersion to improve network performance, and are designed to ease the complexity of memory address computations in hardware. We present a design algorithm with mathematical proofs for these properties. We also explore interleaver variations and analyze the behavior of neural networks as a function of interleaver metrics.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一类用于新型深度神经网络(DNN)架构的交织器,该架构使用算法预先确定的结构化稀疏性来显着降低内存和计算需求,并加快训练速度。交织器保证无冲突的内存访问,以消除空闲的操作周期,优化分布和分散,以提高网络性能,并旨在减轻硬件内存地址计算的复杂性。我们提出了一种设计算法,并对这些性质进行了数学证明。我们还探讨了交织器的变化,并分析了神经网络作为交织器度量函数的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interleaver design for deep neural networks
We propose a class of interleavers for a novel deep neural network (DNN) architecture that uses algorithmically predetermined, structured sparsity to significantly lower memory and computational requirements, and speed up training. The interleavers guarantee clash-free memory accesses to eliminate idle operational cycles, optimize spread and dispersion to improve network performance, and are designed to ease the complexity of memory address computations in hardware. We present a design algorithm with mathematical proofs for these properties. We also explore interleaver variations and analyze the behavior of neural networks as a function of interleaver metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信