Hugo Bourreau, Emeric Guichet, Amine Barrak, Benoît Simon, Fehmi Jaafar
{"title":"利用椭圆曲线加密技术保护物联网基础设施中的通信安全","authors":"Hugo Bourreau, Emeric Guichet, Amine Barrak, Benoît Simon, Fehmi Jaafar","doi":"10.1109/QRS-C57518.2022.00121","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) is widely present nowadays, from businesses to connected houses, and more. IoT is considered a part of the Internet of the future and will comprise billions of intelligent communication. These devices transmit data from sensors to entities like servers to perform suitable responses. The problem of securing these data from cyberattacks increases due to the sensitive information it contains. In addition, studies have shown that most of the time data transiting in IoT devices does not apply encrypted communication. Thus, anyone has the ability to listen to or modify the information. Encrypting communications seems mandatory to secure networks and data transiting from sensors to servers. In this paper, we propose an approach to secure the transmission and the storage of data in IoT using Elliptic Curve Cryptography (ECC). The proposed method offers a high level of security at a reasonable computational cost. Indeed, we present an adequate architecture that ensures the use of a state-of-the-art cryptography algorithm to encrypt sensitive data in IoT.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"320 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Securing the Communication in IoT Infrastructure using Elliptic Curve Cryptography\",\"authors\":\"Hugo Bourreau, Emeric Guichet, Amine Barrak, Benoît Simon, Fehmi Jaafar\",\"doi\":\"10.1109/QRS-C57518.2022.00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) is widely present nowadays, from businesses to connected houses, and more. IoT is considered a part of the Internet of the future and will comprise billions of intelligent communication. These devices transmit data from sensors to entities like servers to perform suitable responses. The problem of securing these data from cyberattacks increases due to the sensitive information it contains. In addition, studies have shown that most of the time data transiting in IoT devices does not apply encrypted communication. Thus, anyone has the ability to listen to or modify the information. Encrypting communications seems mandatory to secure networks and data transiting from sensors to servers. In this paper, we propose an approach to secure the transmission and the storage of data in IoT using Elliptic Curve Cryptography (ECC). The proposed method offers a high level of security at a reasonable computational cost. Indeed, we present an adequate architecture that ensures the use of a state-of-the-art cryptography algorithm to encrypt sensitive data in IoT.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"320 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Securing the Communication in IoT Infrastructure using Elliptic Curve Cryptography
Internet of Things (IoT) is widely present nowadays, from businesses to connected houses, and more. IoT is considered a part of the Internet of the future and will comprise billions of intelligent communication. These devices transmit data from sensors to entities like servers to perform suitable responses. The problem of securing these data from cyberattacks increases due to the sensitive information it contains. In addition, studies have shown that most of the time data transiting in IoT devices does not apply encrypted communication. Thus, anyone has the ability to listen to or modify the information. Encrypting communications seems mandatory to secure networks and data transiting from sensors to servers. In this paper, we propose an approach to secure the transmission and the storage of data in IoT using Elliptic Curve Cryptography (ECC). The proposed method offers a high level of security at a reasonable computational cost. Indeed, we present an adequate architecture that ensures the use of a state-of-the-art cryptography algorithm to encrypt sensitive data in IoT.