玻璃纤维在混凝土中的试验分析

V. Gnanasundar
{"title":"玻璃纤维在混凝土中的试验分析","authors":"V. Gnanasundar","doi":"10.21741/9781644901953-28","DOIUrl":null,"url":null,"abstract":"Abstract. Compared compared to concrete in a construction, the essential portion of the structure has higher weight, however steel utilised as reinforcement has no weight. To address this problem, the Glass Fibre Reinforced Concrete (GFRC) material was developed. Polymers and glass fibre are impregnated in the cementation framework of GFRC, which is a material. Glass fibre, Fly ash, silica sand, Portland cement and water are all components of concrete. The glass content, mix procedure, and casting process all have an impact on the qualities of GFRC concrete. We present the fibre glass as well as other characteristic synthetic chemicals in GFRC to develop a material that is extremely solid and adaptableto construction.By this research, using 0.5 percent and 0.1 percent glass fibres increases compressive and flexural strength of concrete for 7,14 and 28 days with no admixtures.","PeriodicalId":135346,"journal":{"name":"Sustainable Materials and Smart Practices","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Analysis of Glass Fibre in Concrete\",\"authors\":\"V. Gnanasundar\",\"doi\":\"10.21741/9781644901953-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Compared compared to concrete in a construction, the essential portion of the structure has higher weight, however steel utilised as reinforcement has no weight. To address this problem, the Glass Fibre Reinforced Concrete (GFRC) material was developed. Polymers and glass fibre are impregnated in the cementation framework of GFRC, which is a material. Glass fibre, Fly ash, silica sand, Portland cement and water are all components of concrete. The glass content, mix procedure, and casting process all have an impact on the qualities of GFRC concrete. We present the fibre glass as well as other characteristic synthetic chemicals in GFRC to develop a material that is extremely solid and adaptableto construction.By this research, using 0.5 percent and 0.1 percent glass fibres increases compressive and flexural strength of concrete for 7,14 and 28 days with no admixtures.\",\"PeriodicalId\":135346,\"journal\":{\"name\":\"Sustainable Materials and Smart Practices\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Smart Practices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644901953-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Smart Practices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644901953-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要与建筑中的混凝土相比,结构的基本部分具有更高的重量,然而用作加固的钢材没有重量。为了解决这个问题,玻璃纤维增强混凝土(GFRC)材料被开发出来。GFRC是一种材料,在胶结框架中浸渍了聚合物和玻璃纤维。玻璃纤维、粉煤灰、硅砂、硅酸盐水泥和水都是混凝土的组成部分。玻璃掺量、配合比和浇筑工艺对GFRC混凝土的质量都有影响。我们提出了玻璃纤维以及其他特殊的合成化学品在GFRC中,以开发一种非常坚固和适应建筑的材料。通过这项研究,使用0.5%和0.1%的玻璃纤维在不掺合料的情况下,混凝土的抗压和抗弯强度分别提高了7天、14天和28天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Analysis of Glass Fibre in Concrete
Abstract. Compared compared to concrete in a construction, the essential portion of the structure has higher weight, however steel utilised as reinforcement has no weight. To address this problem, the Glass Fibre Reinforced Concrete (GFRC) material was developed. Polymers and glass fibre are impregnated in the cementation framework of GFRC, which is a material. Glass fibre, Fly ash, silica sand, Portland cement and water are all components of concrete. The glass content, mix procedure, and casting process all have an impact on the qualities of GFRC concrete. We present the fibre glass as well as other characteristic synthetic chemicals in GFRC to develop a material that is extremely solid and adaptableto construction.By this research, using 0.5 percent and 0.1 percent glass fibres increases compressive and flexural strength of concrete for 7,14 and 28 days with no admixtures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信