基于自适应共振理论的多光谱城市图像分析

P. Thitimajshima
{"title":"基于自适应共振理论的多光谱城市图像分析","authors":"P. Thitimajshima","doi":"10.1109/IGARSS.2001.978308","DOIUrl":null,"url":null,"abstract":"Multispectral images of an urban environment are analyzed and interpreted by means of a neural network approach. In particular, the advantages found by using an adaptive resonance theory network of the data are shown and commented on. The author uses the ART2 structure which accepts floating-point data, so that each input can be for each pixel gray level values at each band. This choice is an attempt to simplify the algorithm as much as possible. Experiments carried out with JERS-1 images are given.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of multispectral urban images using adaptive resonance theory\",\"authors\":\"P. Thitimajshima\",\"doi\":\"10.1109/IGARSS.2001.978308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multispectral images of an urban environment are analyzed and interpreted by means of a neural network approach. In particular, the advantages found by using an adaptive resonance theory network of the data are shown and commented on. The author uses the ART2 structure which accepts floating-point data, so that each input can be for each pixel gray level values at each band. This choice is an attempt to simplify the algorithm as much as possible. Experiments carried out with JERS-1 images are given.\",\"PeriodicalId\":135740,\"journal\":{\"name\":\"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2001.978308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.978308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用神经网络方法对城市环境的多光谱图像进行分析和解译。特别指出了采用数据自适应共振理论网络的优点,并进行了评论。作者使用接受浮点数据的ART2结构,这样每个输入都可以得到每个频带的每个像素的灰度值。这种选择是为了尽可能地简化算法。给出了用JERS-1图像进行的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of multispectral urban images using adaptive resonance theory
Multispectral images of an urban environment are analyzed and interpreted by means of a neural network approach. In particular, the advantages found by using an adaptive resonance theory network of the data are shown and commented on. The author uses the ART2 structure which accepts floating-point data, so that each input can be for each pixel gray level values at each band. This choice is an attempt to simplify the algorithm as much as possible. Experiments carried out with JERS-1 images are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信