注视估计的AutoML和神经结构搜索

Adrian Bublea, C. Căleanu
{"title":"注视估计的AutoML和神经结构搜索","authors":"Adrian Bublea, C. Căleanu","doi":"10.1109/SACI55618.2022.9919471","DOIUrl":null,"url":null,"abstract":"This paper focuses on employing the AutoKeras neural architecture search tool and Automatic Machine Learning (AutoML) methods to find an optimal gaze estimation system. The Network Architecture Search (NAS) means automatically tuning already existing deep neural network configurations using a dataset of interest. The algorithm will search in the architectural space for a better neural model along with its optimized parameters. In the paper context, an AutoML solution will perform similarly, but using just ‘pure’ ML models. Considering “Appearance-based Gaze Estimation in the Wild” (MPIIGaze) and “Columbia Gaze Data Set” (CAVE) datasets, the experiments showed results comparable to those of with manually designed models.","PeriodicalId":105691,"journal":{"name":"2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AutoML and Neural Architecture Search for Gaze Estimation\",\"authors\":\"Adrian Bublea, C. Căleanu\",\"doi\":\"10.1109/SACI55618.2022.9919471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on employing the AutoKeras neural architecture search tool and Automatic Machine Learning (AutoML) methods to find an optimal gaze estimation system. The Network Architecture Search (NAS) means automatically tuning already existing deep neural network configurations using a dataset of interest. The algorithm will search in the architectural space for a better neural model along with its optimized parameters. In the paper context, an AutoML solution will perform similarly, but using just ‘pure’ ML models. Considering “Appearance-based Gaze Estimation in the Wild” (MPIIGaze) and “Columbia Gaze Data Set” (CAVE) datasets, the experiments showed results comparable to those of with manually designed models.\",\"PeriodicalId\":105691,\"journal\":{\"name\":\"2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI55618.2022.9919471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI55618.2022.9919471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要利用AutoKeras神经架构搜索工具和自动机器学习(AutoML)方法来寻找最优的凝视估计系统。网络架构搜索(NAS)意味着使用感兴趣的数据集自动调整已经存在的深度神经网络配置。该算法将在体系结构空间中搜索更好的神经模型及其优化后的参数。在论文上下文中,AutoML解决方案将执行类似的操作,但只使用“纯”ML模型。考虑到“基于外观的野生凝视估计”(MPIIGaze)和“哥伦比亚凝视数据集”(CAVE)数据集,实验结果与人工设计模型的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoML and Neural Architecture Search for Gaze Estimation
This paper focuses on employing the AutoKeras neural architecture search tool and Automatic Machine Learning (AutoML) methods to find an optimal gaze estimation system. The Network Architecture Search (NAS) means automatically tuning already existing deep neural network configurations using a dataset of interest. The algorithm will search in the architectural space for a better neural model along with its optimized parameters. In the paper context, an AutoML solution will perform similarly, but using just ‘pure’ ML models. Considering “Appearance-based Gaze Estimation in the Wild” (MPIIGaze) and “Columbia Gaze Data Set” (CAVE) datasets, the experiments showed results comparable to those of with manually designed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信