{"title":"广义叠加码的下界及其在抑制剂群检验中的应用","authors":"Annalisa De Bonis","doi":"10.1109/ISIT.2007.4557249","DOIUrl":null,"url":null,"abstract":"It has been introduced a new generalization of superimposed codes that finds application to the design of efficient algorithms for a variant of group testing known as group testing with inhibitors (GTI). Families associated to these codes have the property that for every q + Sigma<sub>i=1</sub> <sup>s</sup> p<sub>i</sub> pairwise different members F<sub>1</sub> <sup>1</sup>,hellip,F<sub>p1</sub> <sup>1</sup>,hellip, F<sub>1</sub> <sup>s</sup>,hellip,F<sub>ps</sub> <sup>s</sup>,G<sub>1</sub>, hellip,G<sub>q</sub> of the family it holds cap<sub>i=1</sub> <sup>s</sup> cup<sub>j=1</sub> <sup>pi</sup> F<sub>j</sub> <sup>i</sup> nsube cup<sub>i=1</sub> <sup>q</sup> G<sub>j</sub>. In this paper we present a lower bound on the minimum length of the generalized superimposed codes of A. De Bonis.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound for generalized superimposed codes with application to group testing with inhibitors\",\"authors\":\"Annalisa De Bonis\",\"doi\":\"10.1109/ISIT.2007.4557249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been introduced a new generalization of superimposed codes that finds application to the design of efficient algorithms for a variant of group testing known as group testing with inhibitors (GTI). Families associated to these codes have the property that for every q + Sigma<sub>i=1</sub> <sup>s</sup> p<sub>i</sub> pairwise different members F<sub>1</sub> <sup>1</sup>,hellip,F<sub>p1</sub> <sup>1</sup>,hellip, F<sub>1</sub> <sup>s</sup>,hellip,F<sub>ps</sub> <sup>s</sup>,G<sub>1</sub>, hellip,G<sub>q</sub> of the family it holds cap<sub>i=1</sub> <sup>s</sup> cup<sub>j=1</sub> <sup>pi</sup> F<sub>j</sub> <sup>i</sup> nsube cup<sub>i=1</sub> <sup>q</sup> G<sub>j</sub>. In this paper we present a lower bound on the minimum length of the generalized superimposed codes of A. De Bonis.\",\"PeriodicalId\":193467,\"journal\":{\"name\":\"2007 IEEE International Symposium on Information Theory\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2007.4557249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种新的叠加代码的泛化方法,该方法可以应用于设计有效的算法,用于被称为具有抑制剂的组测试(GTI)的组测试的变体。与这些代码相关联的族具有这样的性质:对于每一个q + Sigmai=1 s pi,族的不同成员F1 1,hellip,Fp1 1,hellip,Fp1 1,hellip,Fp1 s,G1, hellip,Gq,它持有capi=1 s cupj=1 pi Fj i, subcup =1 q Gj。本文给出了a . De Bonis广义叠加码的最小长度的下界。
A lower bound for generalized superimposed codes with application to group testing with inhibitors
It has been introduced a new generalization of superimposed codes that finds application to the design of efficient algorithms for a variant of group testing known as group testing with inhibitors (GTI). Families associated to these codes have the property that for every q + Sigmai=1s pi pairwise different members F11,hellip,Fp11,hellip, F1s,hellip,Fpss,G1, hellip,Gq of the family it holds capi=1s cupj=1pi Fji nsube cupi=1q Gj. In this paper we present a lower bound on the minimum length of the generalized superimposed codes of A. De Bonis.