节点属性空间图分区

Daniel Bereznyi, Ahmad Qutbuddin, Y. Her, Kwangsoo Yang
{"title":"节点属性空间图分区","authors":"Daniel Bereznyi, Ahmad Qutbuddin, Y. Her, Kwangsoo Yang","doi":"10.1145/3397536.3422198","DOIUrl":null,"url":null,"abstract":"Given a spatial graph and a set of node attributes, the Node-attributed Spatial Graph Partitioning (NSGP) problem partitions a node-attributed spatial graph into k homogeneous sub-graphs that minimize both the total RMSErank1 and edge-cuts while meeting a size constraint on the sub-graphs. RMSErank1 is the Root Mean Square Error between a matrix and its rank-one decomposition. The NSGP problem is important for many societal applications such as identifying homogeneous communities in a spatial graph and detecting interrelated patterns in traffic accidents. This problem is NP-hard; it is computationally challenging because of the large size of spatial graphs and the constraint that the sub-graphs must be homogeneous, i.e. similar in terms of node attributes. This paper proposes a novel approach for finding a set of homogeneous sub-graphs that can minimize both the total RMSErank1 and edge-cuts while meeting the size constraint. Experiments and a case study using U.S. Census datasets and HP#6 watershed network datasets demonstrate that the proposed approach partitions a spatial graph into a set of homogeneous sub-graphs and reduces the computational cost.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Node-attributed Spatial Graph Partitioning\",\"authors\":\"Daniel Bereznyi, Ahmad Qutbuddin, Y. Her, Kwangsoo Yang\",\"doi\":\"10.1145/3397536.3422198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a spatial graph and a set of node attributes, the Node-attributed Spatial Graph Partitioning (NSGP) problem partitions a node-attributed spatial graph into k homogeneous sub-graphs that minimize both the total RMSErank1 and edge-cuts while meeting a size constraint on the sub-graphs. RMSErank1 is the Root Mean Square Error between a matrix and its rank-one decomposition. The NSGP problem is important for many societal applications such as identifying homogeneous communities in a spatial graph and detecting interrelated patterns in traffic accidents. This problem is NP-hard; it is computationally challenging because of the large size of spatial graphs and the constraint that the sub-graphs must be homogeneous, i.e. similar in terms of node attributes. This paper proposes a novel approach for finding a set of homogeneous sub-graphs that can minimize both the total RMSErank1 and edge-cuts while meeting the size constraint. Experiments and a case study using U.S. Census datasets and HP#6 watershed network datasets demonstrate that the proposed approach partitions a spatial graph into a set of homogeneous sub-graphs and reduces the computational cost.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给定一个空间图和一组节点属性,节点属性空间图分区(NSGP)问题将一个节点属性空间图划分为k个齐次子图,使总RMSErank1和边切最小化,同时满足子图的大小约束。RMSErank1是矩阵与其秩一分解之间的均方根误差。NSGP问题对于许多社会应用非常重要,例如在空间图中识别同质社区和检测交通事故中的相关模式。这个问题是np困难的;由于空间图的大尺寸和子图必须是同构的约束,即在节点属性方面相似,因此在计算上具有挑战性。本文提出了一种寻找一组齐次子图的新方法,该方法可以在满足大小约束的情况下最小化RMSErank1和边切。使用美国人口普查数据集和HP#6流域网络数据集的实验和案例研究表明,所提出的方法将空间图划分为一组同质子图,并降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Node-attributed Spatial Graph Partitioning
Given a spatial graph and a set of node attributes, the Node-attributed Spatial Graph Partitioning (NSGP) problem partitions a node-attributed spatial graph into k homogeneous sub-graphs that minimize both the total RMSErank1 and edge-cuts while meeting a size constraint on the sub-graphs. RMSErank1 is the Root Mean Square Error between a matrix and its rank-one decomposition. The NSGP problem is important for many societal applications such as identifying homogeneous communities in a spatial graph and detecting interrelated patterns in traffic accidents. This problem is NP-hard; it is computationally challenging because of the large size of spatial graphs and the constraint that the sub-graphs must be homogeneous, i.e. similar in terms of node attributes. This paper proposes a novel approach for finding a set of homogeneous sub-graphs that can minimize both the total RMSErank1 and edge-cuts while meeting the size constraint. Experiments and a case study using U.S. Census datasets and HP#6 watershed network datasets demonstrate that the proposed approach partitions a spatial graph into a set of homogeneous sub-graphs and reduces the computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信