斯洛文尼亚语和克罗地亚语在性别职业类比方面的词嵌入

Matej Ulčar, Anka Supej, M. Robnik-Sikonja, Senja Pollak
{"title":"斯洛文尼亚语和克罗地亚语在性别职业类比方面的词嵌入","authors":"Matej Ulčar, Anka Supej, M. Robnik-Sikonja, Senja Pollak","doi":"10.4312/SLO2.0.2021.1.26-59","DOIUrl":null,"url":null,"abstract":"In recent years, the use of deep neural networks and dense vector embeddings for text representation have led to excellent results in the field of computational understanding of natural language. It has also been shown that word embeddings often capture gender, racial and other types of bias. The article focuses on evaluating Slovene and Croatian word embeddings in terms of gender bias using word analogy calculations. We compiled a list of masculine and feminine nouns for occupations in Slovene and evaluated the gender bias of fastText, word2vec and ELMo embeddings with different configurations and different approaches to analogy calculations. The lowest occupational gender bias was observed with the fastText embeddings. Similarly, we compared different fastText embeddings on Croatian occupational analogies.","PeriodicalId":371035,"journal":{"name":"Slovenščina 2.0: empirical, applied and interdisciplinary research","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Slovene and Croatian word embeddings in terms of gender occupational analogies\",\"authors\":\"Matej Ulčar, Anka Supej, M. Robnik-Sikonja, Senja Pollak\",\"doi\":\"10.4312/SLO2.0.2021.1.26-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the use of deep neural networks and dense vector embeddings for text representation have led to excellent results in the field of computational understanding of natural language. It has also been shown that word embeddings often capture gender, racial and other types of bias. The article focuses on evaluating Slovene and Croatian word embeddings in terms of gender bias using word analogy calculations. We compiled a list of masculine and feminine nouns for occupations in Slovene and evaluated the gender bias of fastText, word2vec and ELMo embeddings with different configurations and different approaches to analogy calculations. The lowest occupational gender bias was observed with the fastText embeddings. Similarly, we compared different fastText embeddings on Croatian occupational analogies.\",\"PeriodicalId\":371035,\"journal\":{\"name\":\"Slovenščina 2.0: empirical, applied and interdisciplinary research\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Slovenščina 2.0: empirical, applied and interdisciplinary research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4312/SLO2.0.2021.1.26-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovenščina 2.0: empirical, applied and interdisciplinary research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4312/SLO2.0.2021.1.26-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,使用深度神经网络和密集向量嵌入进行文本表示在自然语言的计算理解领域取得了优异的成绩。研究还表明,词嵌入通常会捕捉到性别、种族和其他类型的偏见。本文着重于评估斯洛文尼亚语和克罗地亚语的词嵌入方面的性别偏见使用词类比计算。我们编制了斯洛文尼亚语职业的阳性和阴性名词列表,并评估了fastText、word2vec和ELMo嵌入在不同配置和不同类比计算方法下的性别偏见。快速文本嵌入的职业性别偏见最低。同样,我们比较了克罗地亚职业类比的不同fastText嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slovene and Croatian word embeddings in terms of gender occupational analogies
In recent years, the use of deep neural networks and dense vector embeddings for text representation have led to excellent results in the field of computational understanding of natural language. It has also been shown that word embeddings often capture gender, racial and other types of bias. The article focuses on evaluating Slovene and Croatian word embeddings in terms of gender bias using word analogy calculations. We compiled a list of masculine and feminine nouns for occupations in Slovene and evaluated the gender bias of fastText, word2vec and ELMo embeddings with different configurations and different approaches to analogy calculations. The lowest occupational gender bias was observed with the fastText embeddings. Similarly, we compared different fastText embeddings on Croatian occupational analogies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信