关系结构匹配的高阶注意力转移网络

K. R. Miller, P. Zunde
{"title":"关系结构匹配的高阶注意力转移网络","authors":"K. R. Miller, P. Zunde","doi":"10.1109/IJCNN.1992.227270","DOIUrl":null,"url":null,"abstract":"The Hopfield-Tank optimization network has been applied to the model-image matching problem in computer vision using a graph matching formulation. However, the network has been criticized for unreliable convergence to feasible solutions and for poor solution quality, and the graph matching formulation is unable to represent matching problems with multiple object types, and multiple relations, and high-order relations. The Hopfield-Tank network dynamics is generalized to provide a basis for reliable convergence to feasible solutions, for finding high-quality solutions, and for solving a broad class of optimization problems. The extensions include a new technique called attention-shifting, the introduction of high-order connections in the network, and relaxation of the unit hypercube restriction.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-order attention-shifting networks for relational structure matching\",\"authors\":\"K. R. Miller, P. Zunde\",\"doi\":\"10.1109/IJCNN.1992.227270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hopfield-Tank optimization network has been applied to the model-image matching problem in computer vision using a graph matching formulation. However, the network has been criticized for unreliable convergence to feasible solutions and for poor solution quality, and the graph matching formulation is unable to represent matching problems with multiple object types, and multiple relations, and high-order relations. The Hopfield-Tank network dynamics is generalized to provide a basis for reliable convergence to feasible solutions, for finding high-quality solutions, and for solving a broad class of optimization problems. The extensions include a new technique called attention-shifting, the introduction of high-order connections in the network, and relaxation of the unit hypercube restriction.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将Hopfield-Tank优化网络应用于计算机视觉中的模型-图像匹配问题。然而,该网络收敛到可行解不可靠,解质量差,图匹配公式无法表示具有多对象类型、多关系和高阶关系的匹配问题。对Hopfield-Tank网络动力学进行了推广,为可靠收敛到可行解、寻找高质量解以及求解广泛的优化问题提供了基础。这些扩展包括一种称为注意力转移的新技术,在网络中引入高阶连接,以及放宽单位超立方体限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order attention-shifting networks for relational structure matching
The Hopfield-Tank optimization network has been applied to the model-image matching problem in computer vision using a graph matching formulation. However, the network has been criticized for unreliable convergence to feasible solutions and for poor solution quality, and the graph matching formulation is unable to represent matching problems with multiple object types, and multiple relations, and high-order relations. The Hopfield-Tank network dynamics is generalized to provide a basis for reliable convergence to feasible solutions, for finding high-quality solutions, and for solving a broad class of optimization problems. The extensions include a new technique called attention-shifting, the introduction of high-order connections in the network, and relaxation of the unit hypercube restriction.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信